
PRACTICE FOR EXAM #1

1. Write down the Taylor series for the following functions centered at a.
(a) f(x) = e(x

2) centered at a = 0.

f(x) =
∞∑
n=0

(x2)n

n!
=
∞∑
n=0

x2n

n!

Note the uniqueness of power series (see the last page of problems) implies that this must
be the Taylor series.

(b) g(x) = sin(πx) centered at a = 1.

g(x) = −π(x− 1) + π3(x− 1)3/3!− π5(x− 1)5/5! + π7(x− 1)7/7! + . . .

(c) h(x) = ex−e−x

2
centered at a = 0.

h(x) =
∞∑
n=0

xn

n!
−
∞∑
n=0

(−x)n

n!
=
∞∑
n=0

(1 + (−1)n+1)xn

n!

(d) f(x) = x3 centered at a = 1.

1+
3(x− 1)1

1!
+

(6)(x− 1)2

2!
+

(6)(x− 1)3

3!
= 1+3(x−1)+3(x−1)2+(x−1)3+0(x−1)4+0(x−1)5+. . .

(e) r(x) = 2
4−x centered at a = 0.

Note that 2r(4x) = 4
4−4x

= 1
1−x = 1 + x+ x2 + x3 + . . . . Therefore

r(x) =
1

2
+ (

1

2
)(
x

4
) + (

1

2
)(
x2

42
) + (

1

2
)(
x3

43
) + . . .
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2. Determine which of the following series are convergent. Use the comparison tests, ratio
test, integral test, and Leibnez’s theorem.

(a)
∑∞

n=4
(−1)n
√
n−2

Converges. This follows immediately from Leibnez’s theorem since 1√
n−2

is a decreasing

sequence of positive numbers which converges to zero.

(b)
∑∞

n=2
1

(ln(n))n

Converges. To see this it is sufficient to show that the partial sum
∑∞

n=9
1

(ln(n))n converges.

But then we apply the comparison test with the series
∑∞

n=9
1
2n (note that ln(n) > 2 for

n ≥ 9).

(c)
∑∞

n=1
3nn!
nn

Diverges. We use the ratio test:

3n+1(n+ 1)!/(n+ 1)(n+1)

3nn!/nn
=

3nn

(n+ 1)n
=

(
3

(1 + 1
n
)n

)
As n→∞ this goes to 3

e
> 3

3
= 1 which shows it diverges by the ratio test.

(d)
∑∞

n=2
1

n cos(πn)

Converges, the series is exactly the same as
∑∞

n=2(−1)n 1
n

which converges by Leibnez’s
theorem.

(e)
∑∞

n=1
n!
n(n!)

Converges, use the comparison test. Note n!
n(n!) <

n!
nn and the series of the latter converges

by work in previous assignments.
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3. Show that the following sequences {an} are convergent or non-convergent.

(a) an =
√

ln(n+ 1).

Non-convergent, in fact the sequence is not even bounded. Fix K > 0. Then set N = deK2e.
Note that for n > N , an > aN =

√
ln(deK2e+ 1) >

√
ln(eK2) =

√
K2 = K.

(b) Set a1 = 0 and a2 = 3. In general, for n ≥ 3, use the recursive definition an =
(2an−1 + an−2)/3.

Convergent, we will in fact show that the sequence is Cauchy. First consider

|an+1 − an| = |(2an + an−1)/3− an| =
1

3
|an − an−1|.

Therefore in general we know that |an+1 − an| = 1
3

n−1|a2 − a1| = 1
3

n−1
(3) = 1

3

n−2
. Choose

ε > 0 and choose N > 0 such that 1
3

N−2
< ε. Suppose that n,m > N . Notice that an and

am are in between aN and aN+1 by construction, so that |an−am| < |aN −aN+1| = 1
3

N−2
< ε

as desired.

(c) Let f : R → R be a bounded non-decreasing function. Define a1 = f(0) and define
an = f(an−1) recursively.

Convergent, but we must analyze several cases.

Case 1 a1 = 0. In this case a2 = 0, a3 = 0, etc... So that an is a constant and thus convergent
sequence.

Case 2 a1 > 0. In this case a2 = f(a1) ≥ f(0) = a1. And in general, by induction (assuming
an ≥ an−1), we know that an+1 = f(an) ≥ f(an−1) = an. Therefore an is a non-
decreasing sequence of numbers which is bounded above. It therefore converges.

Case 3 a1 < 0. In this case, a2 = f(a1) ≤ f(0) = a1. And in general, by induction
(assuming an ≤ an−1), we know that an+1 = f(an) ≥ f(an−1) = an. Therefore an is a
non-increasing sequence of numbers which is bounded below. It therefore converges.

(d) Let {bn} → b be a convergent sequence and suppose f : R→ R is a continuous function.
Define an = f(bn).

Convergent, we will show directly that it converges to f(b). Choose ε > 0. Because f
is continuous, there exists δ bigger than zero such that if |x− b| < δ then |f(x)− f(b)| < ε.
Because {bn} converges to b there exists N > 0 such that if n > N then |bn − b| < δ. Then
notice that if n > N , we know that |bn − b| < δ so that |f(bn)− f(b)| < ε as desired.

(e) Let bn denote the number of prime numbers less than or equal to n (for example, b6 = 3,
because 2, 3, 5 are prime and all are less than or equal to 6). Then define an =

∑∞
n=3

1
bn
.

It diverges by the comparison test since 1
bn
≥ 1

n
. (ie, there are more integers less than

n than prime integers less than n).
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4. Give a direct ε-N proof of the following fact without looking it up in the book:
Suppose that f : R → R is a continuous function and that {an} is a sequence which con-
verges to a. Show that {f(an)} converges to f(a).

This was already given in 3(d).

5. Let fn : A → R be a sequence of functions. Show that the infinite series of functions∑∞
k=1 fk converges uniformly on A if and only if for every ε > 0, there exists an integer

N > 0 such for any pair of integers m and n satisfying m > n > N , then

|
m∑

k=n+1

fk(x)| < ε

for all x ∈ A.

The series
∑∞

k=1 fk converges if and only if the sequence of partial sums sn =
∑n

k=1 fk
converges if and only if the sequence of partial sums {sn} is Cauchy. But the sequence of
partial sums is Cauchy if and only for every ε > 0 there exists an integer N > 0 such that
if m,n > N , then |sn − sm| < ε. Now, if m > n, then |sn − sm| = |

∑m
k=n+1 fk(x)|. On the

other hand, if n ≥ m, we can reverse the roles of m and n and get the same conclusion.

6. Suppose that f(x) =
∑∞

n=0 anx
n =

∑∞
n=0 bnx

n for all x ∈ [−c, c] for some c > 0 (in
particular, both

∑∞
n=0 anc

n and
∑∞

n=0 bnc
n converge). Show that an = bn for all n.

Note that f is thus differentiable (and its derivatives themselves are differentiable etc) for
x ∈ (−c, c) based on a Theorem we proved in class (and in the book). But notice that
f (n)(0) = n!an = n!bn and so we conclude that an = bn as desired.
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