PRACTICE FOR EXAM \#1

1. Write down the Taylor series for the following functions centered at a.
(a) $f(x)=e^{\left(x^{2}\right)}$ centered at $a=0$.

$$
f(x)=\sum_{n=0}^{\infty} \frac{\left(x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}
$$

Note the uniqueness of power series (see the last page of problems) implies that this must be the Taylor series.
(b) $g(x)=\sin (\pi x)$ centered at $a=1$.

$$
g(x)=-\pi(x-1)+\pi^{3}(x-1)^{3} / 3!-\pi^{5}(x-1)^{5} / 5!+\pi^{7}(x-1)^{7} / 7!+\ldots
$$

(c) $h(x)=\frac{e^{x}-e^{-x}}{2}$ centered at $a=0$.

$$
h(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}-\sum_{n=0}^{\infty} \frac{(-x)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{\left(1+(-1)^{n+1}\right) x^{n}}{n!}
$$

(d) $f(x)=x^{3}$ centered at $a=1$.

$$
1+\frac{3(x-1)^{1}}{1!}+\frac{(6)(x-1)^{2}}{2!}+\frac{(6)(x-1)^{3}}{3!}=1+3(x-1)+3(x-1)^{2}+(x-1)^{3}+0(x-1)^{4}+0(x-1)^{5}+\ldots
$$

(e) $r(x)=\frac{2}{4-x}$ centered at $a=0$.

Note that $2 r(4 x)=\frac{4}{4-4 x}=\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots$ Therefore

$$
r(x)=\frac{1}{2}+\left(\frac{1}{2}\right)\left(\frac{x}{4}\right)+\left(\frac{1}{2}\right)\left(\frac{x^{2}}{4^{2}}\right)+\left(\frac{1}{2}\right)\left(\frac{x^{3}}{4^{3}}\right)+\ldots
$$

2. Determine which of the following series are convergent. Use the comparison tests, ratio test, integral test, and Leibnez's theorem.
(a) $\sum_{n=4}^{\infty} \frac{(-1)^{n}}{\sqrt{n-2}}$

Converges. This follows immediately from Leibnez's theorem since $\frac{1}{\sqrt{n-2}}$ is a decreasing sequence of positive numbers which converges to zero.
(b) $\sum_{n=2}^{\infty} \frac{1}{(\ln (n))^{n}}$

Converges. To see this it is sufficient to show that the partial sum $\sum_{n=9}^{\infty} \frac{1}{(\ln (n))^{n}}$ converges. But then we apply the comparison test with the series $\sum_{n=9}^{\infty} \frac{1}{2^{n}}$ (note that $\ln (n)>2$ for $n \geq 9$).
(c) $\sum_{n=1}^{\infty} \frac{3^{n} n!}{n^{n}}$

Diverges. We use the ratio test:

$$
\frac{3^{n+1}(n+1)!/(n+1)^{(n+1)}}{3^{n} n!/ n^{n}}=\frac{3 n^{n}}{(n+1)^{n}}=\left(\frac{3}{\left(1+\frac{1}{n}\right)^{n}}\right)
$$

As $n \rightarrow \infty$ this goes to $\frac{3}{e}>\frac{3}{3}=1$ which shows it diverges by the ratio test.
(d) $\sum_{n=2}^{\infty} \frac{1}{n \cos (\pi n)}$

Converges, the series is exactly the same as $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{n}$ which converges by Leibnez's theorem.
(e) $\sum_{n=1}^{\infty} \frac{n!}{n(n!)}$

Converges, use the comparison test. Note $\frac{n!}{n^{(n!)}}<\frac{n!}{n^{n}}$ and the series of the latter converges by work in previous assignments.
3. Show that the following sequences $\left\{a_{n}\right\}$ are convergent or non-convergent.
(a) $a_{n}=\sqrt{\ln (n+1)}$.

Non-convergent, in fact the sequence is not even bounded. Fix $K>0$. Then set $N=\left\lceil e^{K^{2}}\right\rceil$. Note that for $n>N, a_{n}>a_{N}=\sqrt{\ln \left(\left\lceil e^{K^{2}}\right\rceil+1\right)}>\sqrt{\ln \left(e^{K^{2}}\right)}=\sqrt{K^{2}}=K$.
(b) Set $a_{1}=0$ and $a_{2}=3$. In general, for $n \geq 3$, use the recursive definition $a_{n}=$ $\left(2 a_{n-1}+a_{n-2}\right) / 3$.

Convergent, we will in fact show that the sequence is Cauchy. First consider

$$
\left|a_{n+1}-a_{n}\right|=\left|\left(2 a_{n}+a_{n-1}\right) / 3-a_{n}\right|=\frac{1}{3}\left|a_{n}-a_{n-1}\right| .
$$

Therefore in general we know that $\left|a_{n+1}-a_{n}\right|=\frac{1}{3}^{n-1}\left|a_{2}-a_{1}\right|=\frac{1}{3}^{n-1}(3)=\frac{1}{3}^{n-2}$. Choose $\varepsilon>0$ and choose $N>0$ such that $\frac{1_{3}^{N-2}}{}<\varepsilon$. Suppose that $n, m>N$. Notice that a_{n} and a_{m} are in between a_{N} and a_{N+1} by construction, so that $\left|a_{n}-a_{m}\right|<\left|a_{N}-a_{N+1}\right|=\frac{1}{3}^{N-2}<\varepsilon$ as desired.
(c) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded non-decreasing function. Define $a_{1}=f(0)$ and define $a_{n}=f\left(a_{n-1}\right)$ recursively.

Convergent, but we must analyze several cases.
Case $1 a_{1}=0$. In this case $a_{2}=0, a_{3}=0$, etc... So that a_{n} is a constant and thus convergent sequence.
Case $2 a_{1}>0$. In this case $a_{2}=f\left(a_{1}\right) \geq f(0)=a_{1}$. And in general, by induction (assuming $\left.a_{n} \geq a_{n-1}\right)$, we know that $a_{n+1}=f\left(a_{n}\right) \geq f\left(a_{n-1}\right)=a_{n}$. Therefore a_{n} is a nondecreasing sequence of numbers which is bounded above. It therefore converges.
Case $3 a_{1}<0$. In this case, $a_{2}=f\left(a_{1}\right) \leq f(0)=a_{1}$. And in general, by induction (assuming $a_{n} \leq a_{n-1}$), we know that $a_{n+1}=f\left(a_{n}\right) \geq f\left(a_{n-1}\right)=a_{n}$. Therefore a_{n} is a non-increasing sequence of numbers which is bounded below. It therefore converges.
(d) Let $\left\{b_{n}\right\} \rightarrow b$ be a convergent sequence and suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. Define $a_{n}=f\left(b_{n}\right)$.

Convergent, we will show directly that it converges to $f(b)$. Choose $\varepsilon>0$. Because f is continuous, there exists δ bigger than zero such that if $|x-b|<\delta$ then $|f(x)-f(b)|<\varepsilon$. Because $\left\{b_{n}\right\}$ converges to b there exists $N>0$ such that if $n>N$ then $\left|b_{n}-b\right|<\delta$. Then notice that if $n>N$, we know that $\left|b_{n}-b\right|<\delta$ so that $\left|f\left(b_{n}\right)-f(b)\right|<\varepsilon$ as desired.
(e) Let b_{n} denote the number of prime numbers less than or equal to n (for example, $b_{6}=3$, because $2,3,5$ are prime and all are less than or equal to 6$)$. Then define $a_{n}=\sum_{n=3}^{\infty} \frac{1}{b_{n}}$.

It diverges by the comparison test since $\frac{1}{b_{n}} \geq \frac{1}{n}$. (ie, there are more integers less than n than prime integers less than n).
4. Give a direct $\epsilon-N$ proof of the following fact without looking it up in the book:

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function and that $\left\{a_{n}\right\}$ is a sequence which converges to a. Show that $\left\{f\left(a_{n}\right)\right\}$ converges to $f(a)$.

This was already given in $3(\mathrm{~d})$.
5. Let $f_{n}: A \rightarrow \mathbb{R}$ be a sequence of functions. Show that the infinite series of functions $\sum_{k=1}^{\infty} f_{k}$ converges uniformly on A if and only if for every $\epsilon>0$, there exists an integer $N>0$ such for any pair of integers m and n satisfying $m>n>N$, then

$$
\left|\sum_{k=n+1}^{m} f_{k}(x)\right|<\epsilon
$$

for all $x \in A$.
The series $\sum_{k=1}^{\infty} f_{k}$ converges if and only if the sequence of partial sums $s_{n}=\sum_{k=1}^{n} f_{k}$ converges if and only if the sequence of partial sums $\left\{s_{n}\right\}$ is Cauchy. But the sequence of partial sums is Cauchy if and only for every $\epsilon>0$ there exists an integer $N>0$ such that if $m, n>N$, then $\left|s_{n}-s_{m}\right|<\epsilon$. Now, if $m>n$, then $\left|s_{n}-s_{m}\right|=\left|\sum_{k=n+1}^{m} f_{k}(x)\right|$. On the other hand, if $n \geq m$, we can reverse the roles of m and n and get the same conclusion.
6. Suppose that $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} b_{n} x^{n}$ for all $x \in[-c, c]$ for some $c>0$ (in particular, both $\sum_{n=0}^{\infty} a_{n} c^{n}$ and $\sum_{n=0}^{\infty} b_{n} c^{n}$ converge). Show that $a_{n}=b_{n}$ for all n.

Note that f is thus differentiable (and its derivatives themselves are differentiable etc) for $x \in(-c, c)$ based on a Theorem we proved in class (and in the book). But notice that $f^{(n)}(0)=n!a_{n}=n!b_{n}$ and so we conclude that $a_{n}=b_{n}$ as desired.

