NOTES ON INJECTIVE AND SURJECTIVE FUNCTIONS MATH 186–1 WINTER 2010

First we recall the definition of a function.

Definition 0.1. A *function* is the following information.

- (a) A domain = D. In other words, a set of allowable input values.
- (b) A codomain = C. In other words, a set of allowable output values.
- (c) A set S of pairs (a, b) where $a \in D$ and $b \in C$ satisfying the following condition. If (a, b) and (a, c) are both in S, then b = c (ie, the pairs are the same).

A function is typically denoted by a single letter, many times f, and is often writen $f: D \to C$ where D is the domain and C is the codomain. Furthermore, if (a, b) are in the set, then we write f(a) = b. Note that the sets involved need not be sets of real numbers. Functions that input and output real numbers often use the letters f, g, h.

Definition 0.2. A function $f : D \to C$ is called *injective*¹ if f(a) = f(a') implies that a = a'. In other words, associated to each possible output value, there is AT MOST one associated input value.

Definition 0.3. A function $f: D \to C$ is called *surjective*² if for every $b \in C$, there exists an $a \in D$ such that f(a) = b. In other words, associated to each possible output value, there is AT LEAST one associated input value.

Definition 0.4. A function $f: D \to C$ is called *bijective* if it is both injective and surjective. In other words, associated to each possible output value, there is EXACTLY ONE associated input value.

Now also recall composing functions.

Definition 0.5. Suppose that $f: B \to C$ is one function and $g: A \to B$ is another function. One can form the composition $f \circ g: A \to C$ defined by the following rule:

$$f \circ g(a) = f(g(a)).$$

We know the following facts about injective and surjective functions. You should be able to prove all of these results to yourself (proofs will not be provided here).

Proposition 0.6. Suppose that $f : B \to C$ and $g : A \to B$ are functions. Then we know the following facts:

- (1) If $f \circ g$ is injective, then g is injective.
- (2) If $f \circ g$ is surjective, then f is surjective.
- (3) If f and g are injective, then $f \circ g$ is injective.
- (4) If f and g are surjective, then $f \circ g$ is surjective.

¹Injective functions are sometimes called *one-to-one*.

 $^{^2 {\}rm Surjective}$ functions are sometimes called *onto*.