HOMEWORK \#7

DUE FRIDAY MARCH 19TH

(1) Fix $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{2}$ to be a basis. Find the eigvalues and describe the eigenvectors of the following linear transformations.
(a) The map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined in the following way. $T(\mathbf{u})=\mathbf{v}$ and $T(\mathbf{v})=2 \mathbf{v}$.
(b) The map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is represented by $\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]$.
(c) The map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is represented by $\left[\begin{array}{cc}2 & -3 \\ 0 & 1\end{array}\right]$.
(d) The map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is represented by $\left[\begin{array}{ll}0 & -2 \\ 2 & -4\end{array}\right]$.
(2) Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation and that $S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$ is another linear transformation. Prove that $S \circ T$ is also a linear transformation.
(3) Fix $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{2}$ to be a basis. Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is represented by the matrix $\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]$ and that $S: \mathbb{R}^{2}$ is represented by the matrix $\left[\begin{array}{ll}0 & -2 \\ 2 & -4\end{array}\right]$. Write down the matrix representation for $T \circ S$. Also write down the matrix representation for $S \circ T$. (What you have just done is called matrix multiplication).
(4) Suppose that $U: \mathbb{R}^{2}$ is a linear transformation. Further suppose that for every other linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, we know that $T \circ U=U \circ T$. What can you say about U ? Prove it!
(5) Suppose that $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{2}$ is a basis. Further suppose that $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ is another basis. Explain how you would construct a matrix which represents (with respect to the first basis \mathbf{u}, \mathbf{v}) the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by the property that $T(\mathbf{u})=\mathbf{x}$ and $T(\mathbf{v})=\mathbf{y}$. Conversely, explain how you would construct a matrix which represents (with respect to the first basis \mathbf{u}, \mathbf{v}) the linear transformation $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by the property that $S(\mathbf{x})=\mathbf{u}$ and $S(\mathbf{y})=\mathbf{v}$. What is the matrix representation for $S \circ T$? What is the matrix representation for $T \circ S$?
(6) Suppose that $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{2}$ is a basis. Further suppose that $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$ is another basis and suppose S and T are as in problem (3). Finally let $M: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be another linear transformation and suppose that M is represented by a matrix A (with respect to the basis \mathbf{x}, \mathbf{y}). Show that the matrix representation of $S \circ M \circ T$ (with respect to $\{\mathbf{x}, \mathbf{y}\}$) is exactly the same as the matrix representation of M with respect to $\{\mathbf{u}, \mathbf{v}\}$.
(7) Fix an orthnormal basis \mathbf{u}, \mathbf{v} and suppose that $A, B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are linear transformations (which you may want to represent / "think of" as matrices). Prove that $\operatorname{det}(A \circ B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$. Given the determinant's geometric interpretation as a way to measure change in area, describe in words why this is formula is you would expect.

