(1) Prove that if $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent, then $\left|\sum_{n=1}^{\infty} a_{n}\right| \leq \sum_{n=1}^{\infty}\left|a_{n}\right|$.
(2) For each of the following sequences of functions $\left\{f_{n}\right\}$, determine the pointwise limit f of $\left\{f_{n}\right\}$ if it exists. Also decide whether $\left\{f_{n}\right\}$ converges uniformly to this function.
(a) $f_{n}(x)=e^{-n x^{2}}$ on $[-1,1]$.
(b) $f_{n}(x)=\frac{n x}{1+n+x}$ on $[0, \infty)$. Hint: Consider $\left|f(x)-f_{n}(x)\right|$ for x large.
(c) $f_{n}(x)=x^{n}-x^{2 n}$. Hint: Find the maximum of $\left|f-f_{n}\right|$ on $[0,1]$.
(3) Find the taylor series at 0 of the following functions.
(a) $f(x)=\ln (x-a)$, for $a \neq 0$.
(b) $f(x)=\frac{1}{\sqrt{1-x^{2}}}$.
(4) Prove that the series $\sum_{n=1}^{\infty} \frac{x}{n\left(1+n x^{2}\right)}$ converges uniformly on \mathbb{R}.
(5) Prove that if $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is an even function then $a_{n}=0$ for n odd. Prove that if f is odd then $a_{n}=0$ for n even.
(6) Find a sequence of integrable functions $\left\{f_{n}\right\}$ that converges to the non-integrable function that is 1 on the rationals and 0 on the irrationals.

