HOMEWORK #5

DUE FRIDAY FEBRUARY 12TH

(1) Prove that if $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then $|\sum_{n=1}^{\infty} a_n| \leq \sum_{n=1}^{\infty} |a_n|$. (2) For each of the following sequences of functions $\{f_n\}$, determine the pointwise limit f of { f_n } if it exists. Also decide whether { f_n } converges uniformly to this function. (a) $f_n(x) = e^{-nx^2}$ on [-1, 1]. (b) $f_n(x) = \frac{nx}{1+n+x}$ on [0, ∞). *Hint:* Consider $|f(x) - f_n(x)|$ for x large. (c) $f_n(x) = x^n - x^{2n}$. *Hint:* Find the maximum of $|f - f_n|$ on [0, 1].

- (3) Find the taylor series at 0 of the following functions.

- (a) f(x) = ln(x a), for a ≠ 0.
 (b) f(x) = 1/(√1-x^2).
 (4) Prove that the series ∑_{n=1}[∞] 1/(n(1+nx^2)) converges uniformly on ℝ.
 (5) Prove that if f(x) = ∑_{n=0}[∞] a_nxⁿ is an even function then a_n = 0 for n odd. Prove that if f is odd then $a_n = 0$ for n even.
- (6) Find a sequence of integrable functions $\{f_n\}$ that converges to the non-integrable function that is 1 on the rationals and 0 on the irrationals.