HOMEWORK \#3
 MATH 186-1
 WINTER 2010

DUE WEDNESDAY JANUARY 27TH
(1) Suppose that $f^{\prime \prime}$ exists.
(a) Show that

$$
f^{\prime \prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)+f(a-h)-2 f(a)}{h^{2}}
$$

Hint: Use the Taylor polynomial $P_{2, a}(x)$ with $x=a+h$ and with $x=a-h$.
(b) Let

$$
f(x)= \begin{cases}x^{2}, & x \geq 0 \\ -x^{2}, & x<0\end{cases}
$$

Show that $f^{\prime \prime}$ does not exist (at $x=0$) but that $\lim _{h \rightarrow 0} \frac{f(a+h)+f(a-h)-2 f(a)}{h^{2}}$ exists.
(2) Suppose that a_{i} and b_{i} are coefficients in the Taylor polynomials of f and g respective (at 0). Thus $a_{i}=f^{(i)}(0) /(i!)$ and $b_{i}=g^{(i)}(0) /(i!)$. Find the Taylor coefficients c_{i} of the following functions (at 0) in terms of the a_{i} and b_{i}.
(i) $f+g$
(ii) $f-g$
(iii) f^{\prime}
(iv) $f \cdot g$ (this one may take some thought)
(v) $h(x)=\int_{0}^{x} f(t) d t$
(3) What can be said about the sequence $\left\{a_{n}\right\}$ if it converges and each a_{n} is an integer?
(4) Suppose that $\left\{a_{n}\right\}$ is a convergent sequence. Prove that the set of all numbers a_{n} is bounded. Further show that at least one of the following are true.
(i) The set of all numbers a_{n} has a maximum value.
(ii) The set of all numbers a_{n} has a minimum value.
(5) Suppose that f is continuous and that the sequence

$$
x, f(x), f(f(x)), f(f(f(x))), \ldots
$$

converges to c. Prove that c is a "fixed point" for f. In other words, show that $f(c)=c$.
(6) Let $\left\{x_{n}\right\}$ be a bounded sequence and set $y_{n}=\sup \left\{x_{n}, x_{n+1}, x_{n+2}, \ldots\right\}$. Show that $\left\{y_{n}\right\}$ converges.

