HOMEWORK #2 MATH 186-1 WINTER 2010

DUE TUESDAY JANUARY 19TH

- (1) Prove that $\cos(x+y) = \cos(x)\cos(y) \sin(x)\sin(y)$.
- (2) Prove in detail the fact that $\sin'(\pi) = -1$ (which is equal to $\cos(\pi)$). We briefly discussed this in class (and the book gives a big hint if you read it).
- (3) Prove that

$$\arcsin(a) + \arcsin(b) = \arcsin\left(a\sqrt{1-b^2} + b(\sqrt{1-a^2})\right)$$

- (4) Find $\lim_{x\to\infty} \sin(\frac{1}{x})$.
- (5) Prove that $|\sin(x) \sin(y)| \le |x y|$. Then prove that the \le sign can be replaced by < if $x \ne y$.
- (6) Compute the derivatives with respect to x of the following functions.

(a)
$$f(x) = e^{e^{e^{\sin(x)}}}$$
.
(b) $g(x) = \left(\arcsin\left(\frac{e^x}{\cos(x)}\right)\right)^{\log_{10}(x)}$.

(c)
$$h(x) = \int_{1}^{x} e^{\sin^2(t)} dt$$
.

- (7) Find $\lim_{x\to 0^+} x^x$.
- (8) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is differentiable and never zero.
 - (a) Prove that $\log(|f|)' = f'/f$.

(b) Suppose that f' = cf for some constant c. Show that $f(x) = ke^{cx}$ for some number k. (9) Prove that

$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} \le e^x$$

for any $x \ge 0$ and any integer n > 0. Hint: Use induction on n and take derivatives.

(10) Suppose that f satisfies f' = f and f(x + y) = f(x)f(y) for all x and y. Prove that $f(x) = e^x$ or that f = 0.