HOMEWORK \#2
 MATH 186-1
 WINTER 2010

DUE TUESDAY JANUARY 19TH

(1) Prove that $\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$.
(2) Prove in detail the fact that $\sin ^{\prime}(\pi)=-1$ (which is equal to $\cos (\pi)$). We briefly discussed this in class (and the book gives a big hint if you read it).
(3) Prove that

$$
\arcsin (a)+\arcsin (b)=\arcsin \left(a \sqrt{1-b^{2}}+b\left(\sqrt{1-a^{2}}\right)\right)
$$

(4) Find $\lim _{x \rightarrow \infty} \sin \left(\frac{1}{x}\right)$.
(5) Prove that $|\sin (x)-\sin (y)| \leq|x-y|$. Then prove that the \leq sign can be replaced by $<$ if $x \neq y$.
(6) Compute the derivatives with respect to x of the following functions.
(a) $f(x)=e^{e^{e^{\sin (x)}}}$.
(b) $g(x)=\left(\arcsin \left(\frac{e^{x}}{\cos (x)}\right)\right)^{\log _{10}(x)}$.
(c) $h(x)=\int_{1}^{x} e^{\sin ^{2}(t)} d t$.
(7) Find $\lim _{x \rightarrow 0^{+}} x^{x}$.
(8) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and never zero.
(a) Prove that $\log (|f|)^{\prime}=f^{\prime} / f$.
(b) Suppose that $f^{\prime}=c f$ for some constant c. Show that $f(x)=k e^{c x}$ for some number k.
(9) Prove that

$$
1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots+\frac{x^{n}}{n!} \leq e^{x}
$$

for any $x \geq 0$ and any integer $n>0$. Hint: Use induction on n and take derivatives.
(10) Suppose that f satisfies $f^{\prime}=f$ and $f(x+y)=f(x) f(y)$ for all x and y. Prove that $f(x)=e^{x}$ or that $f=0$.

