MATH 185-4, EXAM #1
SOLUTIONS

1. Definitions and short answers.
(a) Give a precise definition of what it means for a function f with domain [a, b] to be continuous
on [a,b]. (5 points)

A function f with domain [a,b] is said to be continuous on [a, b] if all of the following conditions

hold:
e for all ¢ € (a,b), lim,_.. f(z) = f(c).
o lim, .+ f(.’IJ) = f(a)
o T,y /(z) = /().

(b) Give a precise definition of the following term: surjective function (5 points)

A function f is called surjective if for every ¢ € R, there exists an element d in the domain of
f such that f(d) = c.

(c) Give a precise definition of the following term: linearly independent set of vectors in the plane
(5 points)

A pair of vector u,v in the plane are said to be linearly independent if whenever one has an
equation au 4 bv = 0 for real numbers a and b, then both a =0 and b = 0.

(d) Suppose that u and v are vectors. Explain using words how to define u + v (you may use a
picture to help illustrate). (5 points)

Fix a point A and realize the vector u as AB for some point B. Realize the vector v as BC
where the point B is as before. Define u + v to be AC.



2 Use ¢’s and d’s in part (a)
(a) (20 points) Show that:
lim (z® — 22) = 0

x—0

Fix ¢ > 0. Choose § = min(1,e/3). Suppose that z satisfies 0 < |z — 0| < §. Write f(z) = 23 — 2z,
L =0and a=0.
Therefore, we see that |z| < § < 1so |z| < 1. But then |22 2| < [22|+]|-2| = |2[|?+2 < 1242 = 3.
On the other hand |z| < &/3 so that 3|z| < e. But then
|f(z) = 0| = |2® — 22 — 0| = |® — 2| - |z < 3|z| <

which completes the proof.

2(b) Define
() = 2> -2z, >0
g\ = x, x <0

Find a § > 0 such that whenever 0 < |z| < ¢, then |g(z) — 0] < 0.5 (ie, what 0 works for e = 0.5)7
Justify your answer (10 points)

Set § =0.5/3 = %. Suppose that x satisfies 0 < |z| < . We have two cases.
x > 0 In this case g(x) = f(x) where f(x) is as in the proof of part (a). But then we just showed
that if |z| < § =¢/3 (for e = 0.5), then |g(z) — 0] = |f(x)| < € = 0.5. As desired.
xz < 0 In this case g(z) = z. But then if |z| < J, then z € (—1/6,0). We now want to show that
|z| < 0.5 but that is obvious since 1/6 < 0.5.



3. Suppose that f is a continuous function on R. Suppose also that f(0) = —2 and that f(1) = 7.
Consider the following set:

S:={x €[0,1]|f(x) =0}
(a) Explain why S is not empty. (8 points)

By the intermediate value theorem, there exists some ¢ € [0, 1] such that f(¢) = 0. Thus ¢ € S so
S # 0.

(b) Set o = sup(5) (ie, v is the least supper bound for S). Explain why « € [0,1]. (5 points)

First note that 1 is an upper bound for S and so @ < 1. On the other hand, the ¢ from part
(a)isin S and ¢ € S C (0,1) which means that ¢ > 0. But then & > ¢ > 0 so a > 0. Combining
these two facts we see that a € (0,1] (an even better statement than the problem asked for).

(c) Show that f(«) =0. (12 points)
Hint: Suppose that f(«) # 0, and then use the following lemma which you may cite without proof

Lemma: If f is continuous at « and f(«) # 0, then there exists a 6 > 0 such that f(z) # 0 for
all z € (o — d,a + 9).

Use the lemma to contradict the choice of .

Suppose « ¢ S or in other words suppose that f(a) # 0. By the Lemma there exists a § > 0
such that f(z) # 0 for all x € (a« — §,« + ). In particular, no element of (v — J,« + d) is in S (ie
(a—d,a+d5)NS=0).

We showed in class that if « is an upper bound for a set S, then for every € > 0, we have that
(¢ —e,a]NS # (. But set ¢ = § and then ) # (o — 5,0 NS C (a — d,a + §) N'S. In particular
(a — 8, + ) NS # () but that contracts what we wrote above.



4. (25 points) Suppose that g is a function that is continuous of a and that f is a function that is
continuous at g(a). Prove that f o g is continuous at a using §’s and €’s.

I’ll refer you to chapter 6 of the book for this.



(Extra Credit) (10 points) We say that a set D C R is closed if R\ D = {x € R|z ¢ D} is open.
Suppose that f is continuous with domain R. Prove that for every closed set D C R, f~(D) is
also closed.

To show that f~1(D) is closed we need to show that R\ f~1(D) is open. We will show this
by showing that R\ f~1(D) = f~Y(R\ D) (which is open because f is continuous and R\ D is
open by assumption).

First we will show that R\ f~1(D) C f~1(R\ D). So choose z € R\ f~1(D). Thus f(x) ¢ D.
Therefore f(z) € R\ D which implies that x € f~1(R\ D) as desired.

Now we show that R\ f~1(D) D f~Y(R\ D). So choose x € f}(R\ D). Then f(x) € R\ D. In
particular, f(z) ¢ D. Therefore x can’t be in f~1(D). But then z € R\ f~1(D) again as desired.

Now we know that both R\ f~1(D) D f~}(R\ D) and R\ f~1(D) C f~Y(R\ D). Therefore

R\ f7Y(D) = fT1(R\ D).
In particular R\ f~1(D) is open and so f~1(D) is closed.



