
EXTRA PROBLEMS #7

DUE: FRI NOVEMBER 9TH

We’ll be doing some exercises related to vector functions. See sections 3-10 through 3-12
in the text for additional discussion.

A vector function is a function F that takes a real number in as input, and outputs a
vector in the plane.

Exercise 0.1. Show that every vector function F : R→ R2 can be described by a rule

F(t) = f(t)i + g(t)j

where f : R→ R and g : R→ R are functions of a single variable.

Proof. For each vector u ∈ R2, we know that there exist unique scalars ru and su such
that u = rui + suj. The ru and su are actually functions of u that take in vectors, and
output scalars (the uniqueness of the r and s make this really a function). Thus we define
f(t) = rF(t) and g(t) = sF(t).

¤
The following definition can be found on pages 187 and 188 of the text. We say that

lim
t→c

F(t) = v

if for every ε > 0, there exists a δ > 0, such that if t ∈ (c−δ, c+δ), t 6= c, then |F(t)−v| < ε.
This second condition can be rephrased as requiring that F(t) is inside the circle of radius

ε centered at v.
We can also define what it means for a vector function to be continuous. A vector function

F(t) is said to be continuous at t = c if

lim
t→c

= F(c).

If F is continuous at every point in its domain, we simply say that F is continuous.

Definition 0.2. We say that a subset U ⊆ R2 is open if for every point P ∈ U , there exists
an ε > 0 such that the interior of the disc of radius ε centered at P is completely contained
in U .

In other words, if P = (p1, p2), then all points v = (x1, x2) which satisfy the inequality

|v − P | =
√

(x1 − p1)2 + (x2 − p2)2 < ε,

are contained inside U .

Exercise 0.3. Prove that U ⊂ R2 is open if and only if for every point P ∈ U , there exists
a e > 0 such that the interior of the square with side length 2e and with central point P is
completely contained in U .

Proof. We have to prove both “dicrections”. First suppose that U is open and choose a
point P ∈ U . We need to find a square around P that is completely contained in U . Since
U is open, there exists a ε > 0 such that the interior of the disc of radius ε centered at P
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is contained in U . We just need to find an e so that the square of side-length 2e (centered
at P ) is contained inside that disk (which is inside U). A quick diagram shows that letting
e = ε√

2
works. One can also easily check this algebraically.

To prove the other direction, roughly speaking, we need to show that if every point has
a square around it, it also has a disk around it. Fix a P ∈ U . Let e > 0 be such that the
interior of the square centered at P with side-length 2e is contained inside U . Choose ε = e
and note that the disk of radius ε is completely contained inside the square (one can again
either do this algebraically, or with a picture). ¤

See extra problems #4 for the definition of an open subset U of R. Also see extra problems
#4 for the definition of f−1(U) where f is a function and U is a subset of the codomain.

Exercise 0.4. Prove that a function F : R→ R2 is continuous if and only if for every open
subset U ⊆ R2, the subset of R, F−1(U), is also open.

Hint: Try something similar to the proofs of 2.2 and 2.3 in extra problems #4.

Proof. Again we have to prove two directions. First suppose that F is continuous. Let U be
an open subset of R2, and fix a point x0 ∈ F−1(U). Note we need to show that F−1(U) is
open. In other words, P = F(x0) ∈ U . Since U is open, there exists an ε > 0 such that the
interior of the disk of radius ε centered at P (which we will denote by Dε(P ) is contained in
U . Since F is continuous, there exists a δ such that F(x) ∈ Dε(P ) for all x ∈ (x0− δ, x0 + δ).
Because Dε(P ) ⊆ U , we see that (x0 − δ, x0 + δ) ⊆ F−1(U). But, since x0 ∈ F−1(U) was
arbitrary, this proves that F−1(U) was open, as desired.

Conversely, suppose that for every open U ⊆ R2, we know that F−1(U) is an open subset
of R. First we claim that any interior of any disk in R2 is itself an open set. This is very
easy to convince yourself of graphically, and it can be verified algebraically as well because
one can consider every point P on the disk as on a radial line through the center C. Then
it is easy to determine the proper radius to create a smaller disk around P inside the larger
disk C.

Now back to the proof. Given a x0 ∈ R and a corresponding point P = F(x0) ∈ R2, and
given an ε > 0, define U to be the disk of radius ε centered at P . By hypothesis, F−1(U) an is
open subset of R. Also note that x0 ∈ F−1(U) since F(x0) = P ∈ U . So there exists a δ > 0
such that (x0−δ, x0+δ) ⊂ F−1(U). But then, for all x ∈ (x0−δ, x0+δ), we have x ∈ F−1(U),
which means F(x) ∈ U = “The interior of the disk of radius epsilon centered aroundF(x0)

′′.
We have thus proven that F is continuous since x0 was arbitrary. ¤

Given a vector function F : R→ R2, we say that F is differentiable at t0 ∈ R if the limit

lim
h→0

1

h
(F(x0 + h)− F(x0))

exists. If the limit exists, we define F′(t0) to be the value of that limit, and we say F′(t0) is
the derivative of F(t) at t0. See section 3-11 in the text.

Exercise 0.5. Suppose that F : R→ R2 is differentiable at every point, prove that F is also
continuous at every point.

Proof. Fix x0 ∈ R. We know that

lim
x→x0

(
1

x− x0

(F(x)− F(x0))

)
= lim

h→0

(
1

h
(F(x0 + h)− F(x0))

)
= F′(x0) = lim

x→x0

F′(x0)



Thus, by multiplication by x− x0, we see that

lim
x→x0

(F(x)− F(x0)) = lim
x→x0

(
x− x0

x− x0

(F(x)− F(x0))

)
= lim

x→x0

(x− x0)F
′(x0) = 0

Therefore, by adding F(x0) to both sides we see that

lim
x→x0

F(x) = F(x0)

as desired. ¤
Exercise 0.6. Suppose that F : R → R2 is a vector function that is differentiable at t0.
Suppose further that g : R → R is a function of a single variable that is also differentiable
at t0.

Consider a new function H(t) = g(t)F(t) (here we are viewing g(t) as a scalar). Prove
that H′(t) = g′(t)F(t) + g(t)F′(t).

Proof. If it exists,

H′(t) = lim
h→0

(
1

h
(H(t + h)−H(t))

)
= lim

h→0

(
1

h
(g(t + h)F(t + h)− g(t)F(t))

)

Using the same trick as in the single variable case, we note that we can write this as

lim
h→0

(
1

h
(g(t + h)F(t + h)− g(t + h)F(t) + g(t + h)F(t)− g(t)F(t))

)
.

After algebraic manipulation, this becomes

lim
h→0

(
1

h
(g(t + h)F(t + h)− g(t + h)F(t))

)
+ lim

h→0

(
1

h
(g(t + h)F(t)− g(t)F(t))

)
.

which equals,
(

lim
h→0

g(t + h)
)

lim
h→0

(
1

h
(F(t + h)− F(t))

)
+ lim

h→0

(
1

h
(g(t + h)− g(t))

)
F(t)

which is just
g(t)F′(t) + g′(t)F(t)

as desired. (And the limit in question exists as well). ¤
Now we define a new notion. Whether a subset of R2 (or even R) is “connected”.

Definition 0.7. We say that a subset C ⊆ R2 (or in R) is disconnected if there are two open
subsets, U and V , of R2 such that U ∩ V = ∅, C ⊆ U ∪ V and C ∩ U 6= ∅ and C ∩ V 6= ∅.

In words, this means that there are two open subsets of R2 (or R) such that C has points
in common with each of them, every point of C is contained in one of them and the two
open sets have no points in common.

Definition 0.8. We say that a subset C ⊆ R2 (or R) is connected if it is not disconnected.

The following theorem is just a restatement of what we’ve already said so far.

Theorem 0.9. A subset C ⊆ R2 (or in R) is connected if whenever there are two open
subsets U and V of R2 (or R) such that C ∈ U ∪ V and U ∩ V = ∅, then either

(a) C ⊆ U or
(b) C ⊆ V .



It is a fact that any open interval (a, b) in R is connected. It also true that R is a connected
subset of itself. You don’t need to prove either of these facts. We may assume them for what
follows. (The way it is proven typically is by the least upper bound axiom). Intuitively, a
subset of R2 (or R) is connected, if you can get from one point to any other point without
the need to “jump”.

Exercise 0.10. Suppose that F : R → R2 is a continuous vector function. Prove that the
range of F is a connected subset of R2.

Hint: Suppose not, then there exist two open subsets U and V of R2 satisfying various
properties. Consider F−1(U) and F−1(V ).

Proof. Suppose that U and V are open sets that show that the range of F is disconnected. I
want to show that F−1(U) and F−1(V ) give two open sets that prove that R is disconnected,
which contradicts the above fact. So we need to show several things. First note that F−1(U)
and F−1(V ) are open since F is continuous.

Let us next show that these two sets are disjoint. Suppose x is a real number such that
x ∈ F−1(U) and x ∈ F−1(V ). But then F(x) ∈ U and F(x) ∈ V , which is impossible because
U and V have no points in common. Therefore, F−1(U) ∩ F−1(V ) = ∅.

We also need to show that F−1(U) and F−1(V ) both contain some points of R. But we
know that U and V both contain points of the range of F. Say u ∈ U is a point of U
contained in the range of F. Further suppose that v ∈ V is a point of V contained in the
range of F. Since u is in the range of F, there exists x ∈ R such that F(x) = u. Likewise,
there exists y ∈ R such that F(y) = v. But then x ∈ F−1(U) and y ∈ F−1(V ), which is
what we wanted.

Finally, we need to show that every element of z ∈ R is contained in either F−1(U) or
F−1(V ). Since z ∈ R, we know that F(z) is contained in the range of F (by definition). But
then either F(z) ∈ U or F(z) ∈ V since the range of F is contained in U ∪ V . This proves
that z is either in F−1(U) or F−1(V ). ¤
Exercise 0.11. Give a brief explanation about why the result of the previous exercise is
closely related to the intermediate value theorem.

In the intermediate value theorem, we learned that the range of a continuous function
f : R → R can’t skip any values. The previous result says the same thing. In this case
we showed that the range of a continuous function F : R → R2 is always connected, which
means that it can’t be broken up in disjoint open sets, which is closely related to the notion
of “skipping values”..


