
MACAULAY2 - RTG SEMINAR
SEPTEMBER 11TH, 2023

You can access Sage online at https://sagecell.sagemath.org/ and run the code below there.

It is also possible to download Sage (without root access) on the department machines, using the instructions
at https://doc.sagemath.org/html/en/installation/conda.html#sec-installation-conda. You can
then run it from the terminal and get the interpreter-like interface.

It is also straightforward to download it on Mac (with or without admin privileges).

If you know Python, you know Sage (in quite a literal sense). Sage also has an interface to use Macaulay2,
which is what we will be looking at.

G = Graph([(0, 1), (1, 2), (0, 2)])
G.plot().show()
V = G.vertices()
print(V)
E = G.edges(labels=False)
print(E)

If you are using the Sage cell, it looks like you can simply type the variable name and it will print it – if
that is the last line of the code. Try changing the print(E) to just E in the last line.

So far, I have only used the Graph library by Sage. Now, let us use the Macaulay2 interface. The documen-
tation can be found at https://doc.sagemath.org/html/en/reference/interfaces/sage/interfaces/
macaulay2.html.

R = macaulay2('ZZ/2[x_0, x_1, x_2]')
print(R)
x = R.gens()
print(x)

The outputs should make sense. Note that R and x are actually Sage variables. On the other hand,

print(x_0)

will give an error. However, we can access this using the list x that we created earlier. So, something like

f = x[0] - x[1] * x[2]

gives a valid element that you can try printing.1

mons = [x[v] * x[w] for v, w in E]

Try printing the above to see we have created. The syntax comes from Python.
1x is a list whose elements can be accessed as x[i], where indexing starts from 0. In our example, since our variables are

also indexed from 0, things line up as expected.

1

https://sagecell.sagemath.org/
https://doc.sagemath.org/html/en/installation/conda.html#sec-installation-conda
https://doc.sagemath.org/html/en/reference/interfaces/sage/interfaces/macaulay2.html
https://doc.sagemath.org/html/en/reference/interfaces/sage/interfaces/macaulay2.html


A natural (monomial) ideal associated to a graph is the edge ideal. What we have created above is the
(canonical monomial) minimal generating set of the ideal. The above is a list in Sage, whose elements are
Macaulay2 objects2. We now turn this into an actual ideal.

I = macaulay2.ideal(mons)
C = I.res()
B = I.res().betti()
print(C)
print(B)
print(C.dot('dd'))

This can be useful! For example, putting together the above things, we have a function below that gives the
Betti table of the edge ideal of a graph (computed over ZZ/2).3

def bettiTable(G):
V = G.vertices(sort=True)
E = G.edges(labels=False)
vars = ','.join([f'x_{v}' for v in V])
R = macaulay2(f'ZZ/2[{vars}]')
x = R.gens()
I = macaulay2.ideal([x[v] * x[w] for v, w in E])
return I.res().betti()

With a little more fussing about how M2 stores Betti tables as hash tables, one could make a function that
gives the total betti numbers. (I am not sure if there’s an existing M2 command that gives it directly.)
Here’s a code that does that. For the time being, let us blindly use it.

def totalBetti(G):
B = bettiTable(G)
B = dict(B)
tot = {}
for key in B:

i = key[0].sage()
if i not in tot:

tot[i] = 0
tot[i] += B[key]

return [tot[i] for i in range(len(tot))]

Now, we could, for example, look at the total Betti numbers of complete graphs.

for n in range(1, 10):
print(totalBetti(graphs.CompleteGraph(n)))

In the above, we are making use of the graphs library of Sage. There are many other classes of graphs that
can be called by a command. There are also ways of going through all graphs with n vertices (and more
restrictions can be put on number of edges, connectedness, if it’s claw-free, et cetera).

Getting data like this can be useful for conjecturing things: For example, for each i, entering βi(I(Kn)) for
few values of n, in OEIS, shows that these are binomial coefficients.

2I think technically they are still Sage objects that wrap a Macaulay2 object.
3The function assumes that G has vertex set of the form {0, . . . , n− 1}.

2



Another example of a Sage function I had used in the past to do things with ideals: I had wanted to generate
all (nonzero) homogeneous quadratic ideals in F2[x, y, z]. There are 63 monomials and thus, 263−1 > 9 ·1018
possible generating sets. However, there are many redundancies: (x2, y2) = (x2, x2 + y2) for example.
In fact, these ideals are in natural bijective correspondence with nonzero subspaces of F2{x2, y2, z2, xy, yz, xz}.
This brings the number down to 2824. Moreover, Sage has a method to generate all the subspaces of F6

2,
which let me get all the ideals.

3


