
MACAULAY2 - RTG SEMINAR

SEPTEMBER 6TH, 2023

Step 1 (create a HashTable):
HashTables are treated for many purposes like classes or structs in C++. Let’s begin by creating

a HashTable. Try the following code.

myHashTable = new HashTable from {1 => "cat", B => "dog", "iii" => "mouse"}

You can access the entries by the code:

myHashTable#1

myHashTable#B

myHashTable#"iii"

In Macaulay2’s terminology, the terms 1, B, "iii" are called keys. The things they evaluate
to are called the values. You can get the list of keys or values by the commands

keys myHashTable

values myHashTable

HashTables can store all sorts of things. They can store lists, functions, or other HashTables.

H1 = new HashTable from {2=>"string", 3 => 7}

L1 = {myList => {1,2,3}, myFunc => I -> I^2, myHash => H1}

tempHash = new HashTable from L1

tempHash#myList#1

tempHash#myHash#2

R = QQ[x,y]

I = ideal(x,y)

J = (tempHash#myFunc)(I)

tempHash#myHash#2

Step 2 (exploring some existing objects):
Most of the objects we manipulate in Macaulay2 are (subclasses of) HashTables. You can see

their internal structure by using the command peek. To see the list of valid keys (the names )

peek R

peek I

peek J

phi = map(R, R, {x^2, y^2})

peek phi

M = J*R^2

peek M

The different objects in these HashTables are themselves HashTables. Note, you cannot actually
access the objects of some of these HashTables without a little work. For example, you can do this
following:

phi#source

L = keys phi

otherSource = L#0
1



phi#otherSource

Explore the objects, and perhaps some other ones too. Perhaps try exploring the objects from
the presentations today as well.

Some of the objects in those objects are themselves HashTables. See if you can peek inside them
as well.

Step 3 (mutable hash tables):
Like Lists, HashTables are not mutable. That is you cannot change the entries in a HashTable.
Sometimes you need to create the entries on a HashTable periodically. This is very useful if

you’ve already done some computation, and want the object to remember what’s been computed
in the past. Many Macaulay2 objects have a cache that stores this kind of stuff.

peek (J#cache)

primaryDecomposition J

peek (J#cache)

In fact, if you run primaryDecomposition twice on the same ideal, it won’t do the computation
again, it will just read what’s already stored in the cache, which is a (CacheTable a subclass of)
MutableHashTable.

You can create MutableHashTables from lists or from HashTables. And you can convert them
back to non-mutable HashTables.

myMutableHashTable = new MutableHashTable from {1 => "cat", B => "dog", "iii" => "mouse"}

peek myMutableHashTable

myMutableHashTable2 = new MutableHashTable from myHashTable

peek myMutableHashTable2

You can then change the entries of a MutableHashTable like follows.

myMutableHashTable#1 = "hamster"

myMutableHashTable#four = "goldfish"

peek myMutableHashTable

Lastly, we can check if an item is in a MutableHashTable and even delete a key by the following
commands.

myMutableHashTable#?four

myMutableHashTable#four

remove(myMutableHashTable, four)

myMutableHashTable#?four

myMutableHashTable#four

You might ask why you would ever use non-mutable hash tables. It turns out that they are
slower for many purposes.

2


