
MACAULAY2 - INTRODUCTION

AUGUST 23RD, 2023

If you haven’t used Macaulay2 before, the easiest way to do it is to open:

http://www.unimelb-macaulay2.cloud.edu.au/

However, let’s learn how to use Macaulay2 on departmental machines.

1. Instructions for using departmental machines locally

Open up the machine in front of you, logging in with your mathematics
department username and password, and open a terminal application. Run
the command:

M2

You should see something like:

Macaulay2, version 1.21

with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, Isomorphism, LLLBases, MinimalPrimes, OnlineLookup,

PrimaryDecomposition, ReesAlgebra, Saturation, TangentCone

i1 :

In the cursor execute the command setup(), it may ask you questions.
Say yes to all. Then execute exit to leave the terminal version of Macaulay2.

Now run

emacs-28.1 &

This will start emacs, which is a nicer environment for running Macaulay2
compared to the terminal. After emacs starts, you can hit F12 and run
Macaulay2 in emacs. You may want to follow that up with ctrl-x followed
by the key 1. Note, you can sometimes also run emacs & depending on your
machine configuration (where you logged in, the emacs & may not work).
Note the symbol & means don’t lock you out of the terminal.

2. Running Macaulay2 on departmental machines remote from
your laptop/desktop

Alternately, you can also log in to departmental machines and run Macaulay2
there. Roughly the idea is to open a terminal application on your local ma-
chine, and run the following command:

ssh -X mathid@asimov.math.utah.edu

Here mathid is your mathematics department username. Then login with
your mathematics department password.

1

2 AUGUST 23RD, 2023

Then follow the instructions above M2, setup(), exit, emacs-28.1 &.
If you have a fast enough internet connection (for instance if you are on
campus), that should be ok. However, you will need X11 on your system.

For Mac, you probably need XQuartz.
For Windows, you will need to use WSL2 and will need to follow the

instructions here.

https://learn.microsoft.com/en-us/windows/wsl/tutorials/gui-apps

Or you can run Macaulay2 in the terminal (ie, run M2 instead of emacs).

3. Running Macaulay2 locally on your machine

You’ll need to follow the instructions here.

https://www.macaulay2.com/Downloads/

For Windows, you’ll want to use WSL2 (ie, the Ubuntu app for windows),
and then basically install it like you would in linux (ie, Ubuntu). For Mac
and Linux operating systems, the procedure tends to be pretty straightfor-
ward. In many cases, Macaulay2 is available in the default repositories.

I plan to devote the second half of next Monday’s seminar to helping
people with this if they would like. In particular, we can also work on
compiling Macaulay2 from source.

4. Simple mathematical Macaulay2 exercises

In emacs or the terminal, or the web interface, start up Macaulay2. You
should see something like the following.

Macaulay2, version 1.21

with packages: ConwayPolynomials, Elimination, IntegralClosure,

InverseSystems, Isomorphism, LLLBases, MinimalPrimes, OnlineLookup,

PrimaryDecomposition, ReesAlgebra, Saturation, TangentCone

i1 :

After the i1 : type

p = 5 <enter>
S = ZZ/p[x,y,z] <enter>
I = ideal(x^2-y*z) <enter>
R = S/I <enter>
dim R <enter>
dim S <enter>

We have just created a quotient ring and computed its dimension. Let’s
understand ring maps. The syntax to create a ring map is:

phi = map(target, source, {a,b,c,...})
Here target is the target ring of the map, source is the source ring of the
map, and a,b,c,... is a list of elements of the target where the variables
of the source go. For example, run the following commands (in the same
window you ran the above)

MACAULAY2 - INTRODUCTION 3

A = ZZ/p[a,b] <enter>
phi = map(A, S, {a^2, a*b, b^2}) <enter>
J = ker phi <enter>

You can also get help on any topic by running help map or to get help
on specific syntax, help (map, Ring, Ring, List) or in a nicer format:
viewHelp map, respectively viewHelp (map, Ring, Ring, List).

1. Create a Frobenius map (called F) from the ring R to itself. Verify that
the map is injective by checking that kernel is zero.

2. Now, we want to view the target of a map as a module over the source. To
do that, we’ll use the package PushForward. Run the following commands
to learn how this works. We’ll study the inclusion R = Z/5[ab, a2, b2] ↪→
Z/5[a, b] = A.

loadPackage "PushForward" <enter>
psi = map(A, S, {a*b, a^2, b^2}) <enter>
isWellDefined psi <enter>
M = (pushFwd(psi))#0 <enter>
rank M <enter>
isHomogeneous M <enter>
pdim M <enter>

Here we viewed A as an R-module and computed its generic rank (over R)
and its projective dimension1 In particular, since the projective dimension
is not zero, M is not free.

3. Do the same thing, but create a different Veronese subring.

4. Use the Macaulay2 help system to out to find a primary decomposition
of an ideal. In particular, find a primary decomposition of this ideal:

T = QQ[x,y,z,w]

J = ideal(y^2*w,x*y^2+y^2*z,z^2*w^2,y*z*w^2,x*z*w^2,x*y*w^2,x^2*w^2)

Verify that your primary decomposition is correct using the intersect com-
mand. Note you can check if two ideals I, J are equal by inputting I ==

J.

5. Use Macaulay2 to take a free resolution of the T-module T^1/J which
you constructed in the previous problem (use the documentation to figure
out how to take a free resolution). Compute TorT1 (T/J, T/J) in two ways,
one by manually using the ** command (which means tensor), by working
with the individual maps in the (resolution tensored with T^1/J). Also use

1note projective dimension pdim only works well if the module is homogeneous, which
it is in this case, it also can’t verify if something has projective dimension infinity, but we
just care if the module is projective.

4 AUGUST 23RD, 2023

Macaulay2’s built in Tor command. Verify that this module is nonzero by
using the dim command (try looking it up). Did they give you the same
answer?

	1. Instructions for using departmental machines locally
	2. Running Macaulay2 on departmental machines remote from your laptop/desktop
	3. Running Macaulay2 locally on your machine
	4. Simple mathematical Macaulay2 exercises

