MACAULAY2 - RTG SEMINAR

NOVEMBER 6TH, 2023

Macaulay2 can compute the normalization of a ring or integral closure of an ideal. The goal
today is to learn how to use those functions (and we’ll also play around with the recently mentioned
“prune” function).

Integral closure of rings.
Recall that the normalization / integral closure of a ring R is the set of all elements in the
fraction field / total ring of fractions that are integral over R. Try normalizing some rings.

R = QQ[x,yl/ideal(x"2-y~3)
S = integralClosure R

It turned out that the normalization map is actually stored as a key in R. You can access it via:
f

R.icMap
or

f

icMap R

Note in this case the normalization of R should be a polynomial ring in one variable, QQ [t] where
x =1t " 3, y=t " 2 Our normalization has lots of unnecessary variables. We can get rid of
them by the command prune

T = prune(S)
g = S.minimalPresentationMap

The second command give the constructed map S — T. You can compose the two ring maps by
h = gxf

Make sure that works.

Exercise #1:  Create a function / method that takes in a (nonnormal) ring R and outputs the
function to the pruned normalization. Try it out on some examples, like QQ[x,y,z]/ideal (x*xy~2
- 2z72) or QQlx,yl/ideal(y"2 - x°3 - x72) (a pinch point or a cusp respectively). I called my
function prunedICMap. If you want to try it on something more interesting, check out the first two
examples in:

https://www.math.utah.edu/ schwede/M2RTG/SeminarExamples11-6-23.m2

The third example might be fine too, but Macaulay2 is very slow for me when I try to compute the
integral closure of that example (it didn’t finish after 5 minutes, and then I gave up.)

Conductor ideals.

Given a ring R, the conductor is the largest ideal that is simultaneously an ideal in both R and
its normalization S D R (ie, the same set is an ideal in both rings). The ideal ¢ also defines the set
of primes @ such that Rg is non-normal (that is, the non-normal locus). It’s also defined as

¢:= Anng(S/R).
1



Macaulay2 can compute conductors (of any finite ring map, defined via annihilators as above). In
the above you computed some finite ring maps. Let’s try computing the conductor of some of those
ring maps we worked with above.

Try out the following code in Macaulay2 (we assume the same R as above).

conductor (icMap R)
what’s wrong? (it doesn’t work in 1.22 at least). Look at the help conductor or code (conductor,
RingMap) (see if false) to see if you can find out what’s wrong or read below for a hint. Let’s
try it on a “different” ring where it works.

R1 = QQ[x,y,Degrees=>{3,2}]/ideal(x"2 - y~3);

conductor (icMap R1)

Ok, let’s fix this. We’ll make a conductor function that works on all rings with the package
pushForward. What pushForward lets you do is, given a finite ring map R — S, is view S-modules
(like 8~1) as an R-module via restriction of scalars.

For example, you can run

M = (pushFwd £)#0
to compute integralClosure R as a R-module. If we want R — S as a map of R-modules, we run:
phi = ((pushFwd f)#2) (sub(1l, target f))
Note ((pushFwd £)#2) is a Macaulay2 function that takes element b of S and returns the S-module
map R — S sending 1 +— b. To compute the conductor you would then run.

c = ann coker phi

Exercise #2: Write a function (I called mine betterConductor) which takes a finite ring map,
and returns the conductor. See if it works on the examples above. You can also compare it in terms
of timing, to this.

E = QQlx,y,z]/ideal (x"11-z"11-y"2%z"9) ;

time conductor icMap E

time betterConductor icMap E
I would recommend you restart when doing timing (as Macaulay?2 cache’s lots of things). To make
it faster, instead of using pushFwd, use the commented out strategy from (conductor, RingMaps).

Integral closure of ideals.

Given an ideal J in a ring R, we can compute its integral closure too. Algebraically, this is the
set of solutions to equations:

X"+ X" far X+ fa=0
where f; € Ji. It can alternately be viewed (under moderate hypotheses) as the the largest ideal
with the same normalized blowup as J (at least if one tracks the induced relatively anti-ample
exceptional divisor too, corresponding to O(—1)). Some fun examples to try this on.
R = QQlx,yl;
J = ideal(x"9, y~9);
integralClosure J

or
R = QQlx,y,2z];
I = ideal (x"4+y 4+z 4+x*y) ;
J = ideal jacobian I

integralClosure J



