The Test Ideals package for Macaulay2

Erin Bela, Alberto F. Boix, Juliette Bruce, Drew Ellingson, Daniel Hernández, Zhibek Kadyrsizova, Mordechai Katzman, Sara Malec, Matthew Mastroeni, Maral Mostafazadehfard, Marcus Robinson, Karl Schwede ${ }^{1}$, Daniel Smolkin, Pedro Teixeira, Emily Witt
${ }^{1}$ Department of Mathematics University of Utah

AMS Sectional Meeting, University of Arkansas 2018

- Consider rings R of characteristic $p>0$.
- No resolution of singularities (in general).
- Kunz proved:

Theorem (Kunz)

R is regular if and only if Frobenius is flat.

- We can measure singularities with Frobenius!
- How flat is Frobenius?
- Consider rings R of characteristic $p>0$.
- No resolution of singularities (in general).
- Kunz proved:

Theorem (Kunz)
R is reaular if and only if Frobenius is flat.

- We can measure singularities with Frobenius!
- How flat is Frobenius?
- Consider rings R of characteristic $p>0$.
- No resolution of singularities (in general).
- Kunz proved:

Theorem (Kunz)

R is regular if and only if Frobenius is flat.

- We can measure singularities with Frobenius!
- How flat is Frobenius?
- Consider rings R of characteristic $p>0$.
- No resolution of singularities (in general).
- Kunz proved:

Theorem (Kunz)

R is regular if and only if Frobenius is flat.

- We can measure singularities with Frobenius!
- How flat is Frobenius?
- Consider rings R of characteristic $p>0$.
- No resolution of singularities (in general).
- Kunz proved:

Theorem (Kunz)

R is regular if and only if Frobenius is flat.

- We can measure singularities with Frobenius!
- How flat is Frobenius?
- Because we are working with computers, domain finite type over \mathbb{F}_{q}.
- Kunz says Frobenius is flat if and only if $R^{1 / p^{e}}$ is locally free over R.
- We can weaken being locally free.

Definition (Hochster-Roberts, Mehta-Ramanathan)

R is F-pure if and only if $R \rightarrow R^{1 / p^{e}}$ splits.

- F-pure is analogous to log canonical singularities.
- Because we are working with computers, domain finite type over \mathbb{F}_{q}.
- Kunz says Frobenius is flat if and only if $R^{1 / p^{e}}$ is locally free over R.
- We can weaken being locally free.

Definition (Hochster-Roberts, Mehta-Ramanathan)
R is F-pure if and only if $R \rightarrow R^{1 / p^{e}}$ splits.

- F-pure is analogous to log canonical singularities.
- Because we are working with computers, domain finite type over \mathbb{F}_{q}.
- Kunz says Frobenius is flat if and only if $R^{1 / p^{e}}$ is locally free over R.
- We can weaken being locally free.

Definition (Hochster-Roberts, Mehta-Ramanathan)

R is F-pure if and only if $R \rightarrow R^{1 / p^{e}}$ splits.

- F-pure is analogous to log canonical singularities.
- Because we are working with computers, domain finite type over \mathbb{F}_{q}.
- Kunz says Frobenius is flat if and only if $R^{1 / p^{e}}$ is locally free over R.
- We can weaken being locally free.

Definition (Hochster-Roberts, Mehta-Ramanathan)

R is F-pure if and only if $R \rightarrow R^{1 / p^{e}}$ splits.

- F-pure is analogous to log canonical singularities.
- SLC in char 0 conjecturally implies F-pure for many p.
- Because we are working with computers, domain finite type over \mathbb{F}_{q}.
- Kunz says Frobenius is flat if and only if $R^{1 / p^{e}}$ is locally free over R.
- We can weaken being locally free.

Definition (Hochster-Roberts, Mehta-Ramanathan)

R is F-pure if and only if $R \rightarrow R^{1 / p^{e}}$ splits.

- F-pure is analogous to log canonical singularities.
- F-pure implies SLC.
- SLC in char 0 conjecturally implies F-pure for many p.
- Because we are working with computers, domain finite type over \mathbb{F}_{q}.
- Kunz says Frobenius is flat if and only if $R^{1 / p^{e}}$ is locally free over R.
- We can weaken being locally free.

Definition (Hochster-Roberts, Mehta-Ramanathan)

R is F-pure if and only if $R \rightarrow R^{1 / p^{e}}$ splits.

- F-pure is analogous to log canonical singularities.
- F-pure implies SLC.
- SLC in char 0 conjecturally implies F-pure for many p.

Checking F-purity can be pretty easy.

- Fedder's Criterion. $R=S / I, S$ is polynomial.

Theorem (Fedder)

R is F-nure at m if and only if $[p]: / \notin \mathrm{m}[p]$.

- If $I=(f)$, then $I^{[p]}: I=\left(f^{p-1}\right)$. $(B O A R D)$
- For example.

Checking F-purity can be pretty easy.

- Fedder's Criterion. $R=S / I, S$ is polynomial.

Theorem (Fedder)

R is F-pure at \mathfrak{m} if and only if $I^{[p]}: I \nsubseteq \mathfrak{m}^{[p]}$.

- If $I=(f)$, then $I^{[p]}: I=(f p-1)$. (BOARD)
- For example.

Checking F-purity can be pretty easy.

- Fedder's Criterion. $R=S / I, S$ is polynomial.

Theorem (Fedder)

R is F-pure at \mathfrak{m} if and only if $I^{[p]}: I \nsubseteq \mathfrak{m}^{[p]}$.

- If $I=(f)$, then $I^{[p]}: I=\left(f^{p-1}\right)$. $($ BOARD $)$
- For example.

Checking F-purity can be pretty easy.

- Fedder's Criterion. $R=S / I, S$ is polynomial.

Theorem (Fedder)

R is F-pure at \mathfrak{m} if and only if $I^{[p]}: I \nsubseteq \mathfrak{m}^{[p]}$.

- If $I=(f)$, then $I^{[p]}: I=\left(f^{p-1}\right)$. $($ BOARD $)$
- For example.

```
i5 : \(S=Z Z / 7[x, y, z] ;\)
i6 : \(\mathrm{f}=\mathrm{x}^{\wedge} 3+\mathrm{y}^{\wedge} 3+\mathrm{z}^{\wedge} 3\);
i8 : isSubset (ideal (f^6), ideal ( \(\mathrm{x}^{\wedge} 7, \mathrm{y}^{\wedge} 7, \mathrm{z}^{\wedge} 7\) ))
o8 = false
```


Macaulay2

We have written a package TestIdeals.m2 that computes whether a ring (or pair) is:

- F-regular
- F-rational
- F-injective
- Test ideals
- F-pure thresholds (with FThresholds.m2).

Macaulay2

We have written a package TestIdeals.m2 that computes whether a ring (or pair) is:

- F-pure
- F-regular
- F-rational
- F-injective
- Test ideals
- F-pure thresholds (with FThresholds.m2).

Macaulay2

We have written a package TestIdeals.m2 that computes whether a ring (or pair) is:

- F-pure
- Analog of SLC.
- F-regular
- F-rational
- F-injective
- Test ideals
- F-pure thresholds (with EThresholds.m2).

Macaulay2

We have written a package TestIdeals.m2 that computes whether a ring (or pair) is:

- F-pure
- Analog of SLC.
- F-regular
- Analog of KLT.
- F-rational
- F-injective
- Test ideals
- F-pure thresholds (with EThresholds.m2).

Macaulay2

We have written a package TestIdeals.m2 that computes whether a ring (or pair) is:

- F-pure
- Analog of SLC.
- F-regular
- Analog of KLT.
- F-rational
- F-injective
- Test ideals
- F-pure thresholds (with FThresholds.m2).

Macaulay2

We have written a package TestIdeals.m2 that computes whether a ring (or pair) is:

- F-pure
- Analog of SLC.
- F-regular
- Analog of KLT.
- F-rational
- Analog of rational.
- F-injective
- Test ideals
- F-pure thresholds (with FThresholds.m2).

We have written a package TestIdeals.m2 that computes whether a ring (or pair) is:

- F-pure
- Analog of SLC.
- F-regular
- Analog of KLT.
- F-rational
- Analog of rational.
- F-injective
- Analog of Du Bois.
- Test ideals
- F-pure thresholds (with FThresholds.m2).

We have written a package TestIdeals.m2 that computes whether a ring (or pair) is:

- F-pure
- Analog of SLC.
- F-regular
- Analog of KLT.
- F-rational
- Analog of rational.
- F-injective
- Analog of Du Bois.
- Test ideals
- Analogs of multiplier ideals
- F-pure thresholds (with EThresholds.m2).

We have written a package TestIdeals.m2 that computes whether a ring (or pair) is:

- F-pure
- Analog of SLC.
- F-regular
- Analog of KLT.
- F-rational
- Analog of rational.
- F-injective
- Analog of Du Bois.
- Test ideals
- Analogs of multiplier ideals
- F-pure thresholds (with EThresholds.m2).

We have written a package TestIdeals.m2 that computes whether a ring (or pair) is:

- F-pure
- Analog of SLC.
- F-regular
- Analog of KLT.
- F-rational
- Analog of rational.
- F-injective
- Analog of Du Bois.
- Test ideals
- Analogs of multiplier ideals
- F-pure thresholds (with FThresholds.m2).
- Analogs of log canonical thresholds.

We have written a package TestIdeals.m2 that computes whether a ring (or pair) is:

- F-pure
- Analog of SLC.
- F-regular
- Analog of KLT.
- F-rational
- Analog of rational.
- F-injective
- Analog of Du Bois.
- Test ideals
- Analogs of multiplier ideals
- F-pure thresholds (with FThresholds.m2).
- Analogs of log canonical thresholds.
- Fedder's criterion works because maps

$$
\phi_{R}: R^{1 / p^{e}} \rightarrow R
$$

come from maps

$$
\phi_{S}: S^{1 / p^{e}} \rightarrow S
$$

such that $\phi_{S}\left(I^{1 / p^{e}}\right) \subseteq I$.

- In fact,
$I^{\left[p^{e}\right]}: I \cong\left\{\phi \in \operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right) \mid \phi\left(I^{1 / p^{e}}\right) \subseteq I\right\}$
- Translates questions on P into questions in polynomial ring
- Note $\left\{\phi_{R} \neq 0\right\} \leftrightarrow\{\Delta \geq 0 \mathbb{Q}$-log boundary $\}$. (BOARD)
- Fedder's criterion works because maps

$$
\phi_{R}: R^{1 / p^{e}} \rightarrow R
$$

come from maps

$$
\phi_{S}: S^{1 / p^{e}} \rightarrow S
$$

such that $\phi_{S}\left(I^{1 / p^{e}}\right) \subseteq I$.

- In fact,

$$
I^{\left[p^{e}\right]}: I \cong\left\{\phi \in \operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right) \mid \phi\left(I^{1 / p^{e}}\right) \subseteq I\right\}
$$

- Translates questions on R into questions in polynomial ring
- Note $\left\{\phi_{R} \neq 0\right\} \leftrightarrow\{\Delta \geq 0 \mathbb{Q}$-log boundary $\}$. (BOARD)
- Fedder's criterion works because maps

$$
\phi_{R}: R^{1 / p^{e}} \rightarrow R
$$

come from maps

$$
\phi_{S}: S^{1 / p^{e}} \rightarrow S
$$

such that $\phi_{S}\left(I^{1 / p^{e}}\right) \subseteq I$.

- In fact,

$$
I^{\left[p^{e}\right]}: I \cong\left\{\phi \in \operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right) \mid \phi\left(I^{1 / p^{e}}\right) \subseteq I\right\}
$$

- Translates questions on R into questions in polynomial ring S.
- Note $\left\{\phi_{R} \neq 0\right\} \leftrightarrow\{\Delta \geq 0 \mathbb{Q}$-log boundary $\}$. (BOARD)
- Fedder's criterion works because maps

$$
\phi_{R}: R^{1 / p^{e}} \rightarrow R
$$

come from maps

$$
\phi_{S}: S^{1 / p^{e}} \rightarrow S
$$

such that $\phi_{S}\left(I^{1 / p^{e}}\right) \subseteq I$.

- In fact,

$$
I^{\left[p^{e}\right]}: I \cong\left\{\phi \in \operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right) \mid \phi\left(I^{1 / p^{e}}\right) \subseteq I\right\}
$$

- Translates questions on R into questions in polynomial ring S.
- Note $\left\{\phi_{R} \neq 0\right\} \leftrightarrow\{\Delta \geq 0 \mathbb{Q}$-log boundary $\}$. (BOARD)

Frobenius trace

One more big tool.

- There exists $\Phi: S^{1 / p^{e}} \rightarrow S$.

- Other monomials to 0 .
- Φ generates $\mathrm{Hom}_{\mathrm{s}}\left(\mathrm{S}^{1 / p^{e}}, S\right)$.
- ϕ is Grothendieck dual to Frobenius.
- $\Phi\left(J^{1 / p^{e}}\right) \subseteq l$ if and only if

$$
f^{\left[p^{6}\right]} \subseteq J .
$$

Theorem (Fedder restated)

defines locus where $R=S / I$ is not F-pure.

Frobenius trace

One more big tool.

- There exists $\Phi: S^{1 / p^{e}} \rightarrow S$.

- Other monomials to 0 .
- Φ generates $\operatorname{Hom}\left(S^{1 / p^{e}}, S\right)$.
- Φ is Grothendieck dual to Frobenius.
- $\Phi\left(J^{1 / p^{e}}\right) \subseteq l$ if and only if

$$
f^{\left[p^{e}\right]} \subseteq J .
$$

Theorem (Fedder restated)

defines locus where $R=S / I$ is not F-pure.

One more big tool.

- There exists $\Phi: S^{1 / p^{e}} \rightarrow S$.
- $\Phi\left(x_{1}^{\frac{p^{e}-1}{p^{e}}} \cdots x_{1}^{\frac{p^{e}-1}{p^{e}}}\right)=1$
- Other monomials to 0 .
- ϕ generates $\operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right)$.
- Φ is Grothendieck dual to Frobenius.
- $\Phi\left(J^{1 / p^{e}}\right) \subseteq I$ if and only if

$$
l^{\left[p^{e}\right]} \subseteq J .
$$

Theorem (Fedder restated)

defines locus where $R=S / I$ is not F-pure.

One more big tool.

- There exists $\Phi: S^{1 / p^{e}} \rightarrow S$.
- $\Phi\left(x_{1}^{\frac{p^{e}-1}{p^{e}}} \cdots x_{1}^{\frac{p^{e}-1}{p^{e}}}\right)=1$
- Other monomials to 0 .
- Φ generates $\operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right)$.
- Φ is Grothendieck dual to Frobenius.
- $\Phi\left(J^{1 / p^{e}}\right) \subset l$ if and only if

Theorem (Fedder restated) $\left.\phi\left(\left(I D^{e}\right]: I\right)^{1 / p^{e}}\right) \equiv!$ mage $\left(\operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right) \xrightarrow{@ 1} R\right)$
defines locus where $R=S / I$ is not F-pure.

One more big tool.

- There exists $\Phi: S^{1 / p^{e}} \rightarrow S$.
- $\Phi\left(x_{1}^{\frac{p^{e}-1}{p^{e}}} \cdots x_{1}^{\frac{p^{e}-1}{p^{e}}}\right)=1$
- Other monomials to 0 .
- Φ generates $\operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right)$.
- Φ is Grothendieck dual to Frobenius.
- $\Phi\left(J^{1 / p^{e}}\right) \subseteq l$ if and only if

Theorem (Fedder restated) $\phi\left(\left(I^{\left[D^{e}\right]}: N\right)^{1 / p^{e}}\right) \equiv$ I mage $\left(\operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right) \xrightarrow{@ 1} R\right)$
defines locus where $R=S / I$ is not F-pure.

One more big tool.

- There exists $\Phi: S^{1 / p^{e}} \rightarrow S$.
- $\Phi\left(x^{\frac{p^{e}-1}{p^{e}}} \cdots x_{1}^{\frac{p^{e}-1}{p^{e}}}\right)=1$
- Other monomials to 0 .
- Φ generates $\operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right)$.
- Φ is Grothendieck dual to Frobenius.
- $\Phi\left(J^{1 / p^{e}}\right) \subseteq I$ if and only if

Theorem (Fedder restated) $\left.\phi\left(\left(I D^{e}\right]: r\right)^{1 / p^{e}}\right)=\| \operatorname{lmage}\left(\operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right) \xrightarrow{@ 1} R\right)$
defines locus where $R=S / I$ is not F-pure.

One more big tool.

- There exists $\Phi: S^{1 / p^{e}} \rightarrow S$.
- $\Phi\left(x^{\frac{p^{e}-1}{p^{e}}} \cdots x_{1}^{\frac{p^{e}-1}{p^{e}}}\right)=1$
- Other monomials to 0 .
- Φ generates $\operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right)$.
- Φ is Grothendieck dual to Frobenius.
- $\Phi\left(J^{1 / p^{e}}\right) \subseteq I$ if and only if

$$
I^{\left[p^{e}\right]} \subseteq J
$$

Theorem (Fedder restated)

$$
\Phi\left(\left(I^{\left[p^{e}\right]}: I\right)^{1 / p^{e}}\right) \equiv l \operatorname{Image}\left(\operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right) \xrightarrow{@ 1} R\right)
$$

defines locus where $R=S / I$ is not F-pure.

We compute some Macaulay2 examples. $\Phi(J)$ is called the Frobenius root of J.

```
i12 : I =ideal (x^3 + \(\left.y^{\wedge} 3+z^{\wedge} 3\right)\);
i13 : frobeniusRoot(1, I^7 : I)
o13 = ideal 1
i14 : isFPure(S/I)
o14 = true
i15 : J = ideal (x^4+y^4+z^4);
i16 : frobeniusRoot (1, J^7 : J)
                                    2 2 2
o16 = ideal (z , y*z, x*z, y , x*y, x )
i19 : isFPure(S/J)
o19 = false
```

```
i20 : T = ZZ/5[a,b,c,d,e];
i21 : B = ZZ/5[x,y];
\(i 22: f=\operatorname{map}\left(B, T,\left\{x^{\wedge} 4, x^{\wedge} 3 * y, x^{\wedge} 2 * y^{\wedge} 2, x * y^{\wedge} 3, y^{\wedge}\right.\right.\)
                                432234
o22 = map (B, T, \(\{x, x y, x y, x * y, y\})\)
o22 : RingMap B <--- T
i23 : I = ker f
                                    2 2
o23 = ideal (d - c*e, c*d - b*e, b*d - a*e, c - a
o23 : Ideal of T
i24 : isFPure(T/I)
o24 = true
```


F-regularity and test ideals

- Analog of KLT.

Definition

R is strongly F-regular if for every (interesting ${ }^{a}$) $c \in R$, there is some e and $\phi: R^{1 / p^{e}} \rightarrow R$ so that $\phi\left(c^{1 / p^{e}}\right)=1$.
${ }^{a}$ In Jacobian ideal is good enough

- If translated by Fedder's methods,

Theorem
$R=S / I$ is strongly F-regular if and only if

- R is KLT if and only if $\left(R, c^{\epsilon}\right)$ is SLC.

F-regularity and test ideals

- Analog of KLT.

Definition

R is strongly F-regular if for every (interesting ${ }^{a}$) $c \in R$, there is some e and $\phi: R^{1 / p^{e}} \rightarrow R$ so that $\phi\left(c^{1 / p^{e}}\right)=1$.
${ }^{a}$ In Jacobian ideal is good enough

- If translated by Fedder's methods,

Theorem

$R=S / I$ is strongly F-regular if and only if

$$
I+\Phi\left(\left(c\left(I^{\left[p^{e}\right]}: I\right)\right)^{1 / p^{e}}\right)=S
$$

- R is KLT if and only if $\left(R, c^{\epsilon}\right)$ is SLC.

F-regularity and test ideals

- Analog of KLT.

Definition

R is strongly F-regular if for every (interesting ${ }^{a}$) $c \in R$, there is some e and $\phi: R^{1 / p^{e}} \rightarrow R$ so that $\phi\left(c^{1 / p^{e}}\right)=1$.
${ }^{a}$ In Jacobian ideal is good enough

- If translated by Fedder's methods,

Theorem

$R=S / I$ is strongly F-regular if and only if

$$
I+\Phi\left(\left(c\left(I^{\left[p^{e}\right]}: I\right)\right)^{1 / p^{e}}\right)=S
$$

- R is KLT if and only if $\left(R, c^{\epsilon}\right)$ is SLC.

```
i3 : \(S=Z Z / 7[x, y, z]\);
i4 : R = S/ideal ( \(x^{\wedge} 2-y * z\) )
i5 : isFRegular(R);
o5 = true
\(i 20: A=Z Z / 7[x, y, z] /\left(y^{\wedge} 2 * z-x *(x-z) *(x+z)\right)\);
i21 : \(C=Z Z / 7[a, b, c, d, e, f]\);
\(i 22: g=\operatorname{map}\left(A, C,\left\{x^{\wedge} 2, x * y, x * z, y^{\wedge} 2, ~ y * z, ~ z \wedge 2\right\}\right)\)
i23 : I = ker g;
i26 : isFRegular (C/I);
o26 = false
```

- We can only show that \mathbb{Q}-Gorenstein rings are not F-regular.

```
i3 : \(S=Z Z / 7[x, Y, z] ;\)
i4 : \(R=S / i d e a l\left(x^{\wedge} 2-y * z\right)\)
i5 : isFRegular (R);
o5 = true
i20: \(A=Z Z / 7[x, y, z] /\left(y^{\wedge} 2 * z-x *(x-z) *(x+z)\right)\);
i21 : \(C=Z Z / 7[a, b, c, d, e, f] ;\)
\(i 22: g=\operatorname{map}\left(A, C,\left\{x^{\wedge} 2, x * y, x * z, y^{\wedge} 2, y * z, z^{\wedge} 2\right\}\right)\)
i23 : I = ker g;
i26 : isFRegular (C/I);
o26 = false
```

- We can only show that \mathbb{Q}-Gorenstein rings are not F-regular.

```
i3 : S = ZZ/7[x,Y,z];
i4 : R = S/ideal(x^2-y*z)
i5 : isFRegular(R);
o5 = true
i20 : A = ZZ/7[x,y,z]/(y^2*z - x* (x-z)* (x+z));
i21 : C = ZZ/7 [a,b,c,d,e,f];
i22 : g = map(A, C, {x^2, x*y, x*z, y^2, y*z, z^2})
i23 : I = ker g;
i26 : isFRegular(C/I);
o26 = false
```

- We can only show that \mathbb{Q}-Gorenstein rings are not F-regular.
- The QGorensteinIndex=>infinity option can prove a non- \mathbb{Q}-Gorenstein ring is F-regular.

```
i3 : S = ZZ/7[x,y,z];
i4 : R = S/ideal (x^2-y*z)
i6 : h = y;
i7 : isFRegular(1/2, y)
07 = false
i8 : isFRegular(1/3, y)
o8 = true
```

- The pair $\left(R, h^{1 / 2}\right)$ is not F-regular but $\left(R, h^{1 / 3}\right)$ is.
- The FThresholds package can even compute F-pure thresholds.

```
i3 : \(S=Z Z / 7[x, y, z]\);
i4 : \(\mathrm{R}=\mathrm{S} / \mathrm{ideal}\left(\mathrm{x}^{\wedge} 2-\mathrm{y} * \mathrm{z}\right)\)
i6 : \(h=y\);
i7 : isFRegular (1/2, y)
07 = false
i8 : isFRegular (1/3, y)
o8 = true
```

- The pair $\left(R, h^{1 / 2}\right)$ is not F-regular but $\left(R, h^{1 / 3}\right)$ is.
- The FThresholds package can even compute F-pure thresholds.

```
i3 : \(S=Z Z / 7[x, y, z]\);
\(i 4: R=S / i d e a l\left(x^{\wedge} 2-y * z\right)\)
i6 : \(h=y\);
i7 : isFRegular (1/2, y)
\(07=\) false
i8 : isFRegular (1/3, y)
o8 = true
```

- The pair $\left(R, h^{1 / 2}\right)$ is not F-regular but $\left(R, h^{1 / 3}\right)$ is.
- The FThresholds package can even compute F-pure thresholds.

F-rationality

- Analog of rational singularities.
- Implies (pseudo-)rational singularities in a fixed characteristic.
- Here's our definition:

Definition

R has F-rational singularities if it is

F-rationality

- Analog of rational singularities.
- Implies (pseudo-)rational singularities in a fixed characteristic.
- Here's our definition:

Definition

R has F-rational singularities if it is

F-rationality

- Analog of rational singularities.
- Implies (pseudo-)rational singularities in a fixed characteristic.
- $\mathcal{O}_{X} \simeq R \pi_{*} \mathcal{O}_{Y}$
- Here's our definition:

Definition
R has F-rational singularities if it is

- Analog of rational singularities.
- Implies (pseudo-)rational singularities in a fixed characteristic.
- $\mathcal{O}_{X} \simeq R \pi_{*} \mathcal{O}_{Y}$
- Here's our definition:

Definition

R has F-rational singularities if it is

- Cohen-Macaulay
- Analog of rational singularities.
- Implies (pseudo-)rational singularities in a fixed characteristic.
- $\mathcal{O}_{X} \simeq R \pi_{*} \mathcal{O}_{Y}$
- Here's our definition:

Definition

R has F-rational singularities if it is

- Cohen-Macaulay
- Analog of rational singularities.
- Implies (pseudo-)rational singularities in a fixed characteristic.
- $\mathcal{O}_{X} \simeq R \pi_{*} \mathcal{O}_{Y}$
- Here's our definition:

Definition

R has F-rational singularities if it is

- Cohen-Macaulay
- $\left(c^{1 / p^{e}} \cdot \omega_{R^{1 / p^{e}}}\right) \xrightarrow{F^{e} \text {-dual }} \omega_{R}$ surjects.

The tricky part is writing the map:

$$
F-\text { dual }: \omega_{R^{1 / p^{e}}} \rightarrow \omega_{R}
$$

- Trick (Katzman) is to embed ω_{R} as an ideal in R.
- Extend F - dual to $\phi_{R}: R^{1 / p^{e}} \rightarrow R$.
- Extend further to $\phi_{S}: S^{1 / p^{e}} \rightarrow S .(R=S / I)$
- Represent $\phi_{S} \in I\left[p^{e}\right]: I$.

The tricky part is writing the map:

$$
F-\text { dual }: \omega_{R^{1 / p^{e}}} \rightarrow \omega_{R}
$$

- Trick (Katzman) is to embed ω_{R} as an ideal in R.
- Extend F - dual to $\phi_{R}: R^{1 / p^{e}} \rightarrow R$.
- Extend further to $\phi_{S}: S^{1 / p^{e}} \rightarrow S .(R=S / l)$
- Represent $\phi_{S} \in I\left[p^{e}\right]: I$.

The tricky part is writing the map:

$$
F-\text { dual }: \omega_{R^{1 / \rho^{e}}} \rightarrow \omega_{R} .
$$

- Trick (Katzman) is to embed ω_{R} as an ideal in R.
- Extend F - dual to $\phi_{R}: R^{1 / p^{e}} \rightarrow R$.
- Extend further to $\phi_{S}: S^{1 / p^{e}} \rightarrow S .(R=S / I)$
- Represent $\phi_{S} \in I\left[p^{e}\right]: I$.

The tricky part is writing the map:

$$
F-\text { dual }: \omega_{R^{1 / \rho^{e}}} \rightarrow \omega_{R} .
$$

- Trick (Katzman) is to embed ω_{R} as an ideal in R.
- Extend F - dual to $\phi_{R}: R^{1 / p^{e}} \rightarrow R$.
- Extend further to $\phi_{S}: S^{1 / p^{e}} \rightarrow S .(R=S / I)$

The tricky part is writing the map:

$$
F-\text { dual }: \omega_{R^{1 / p e}} \rightarrow \omega_{R} .
$$

- Trick (Katzman) is to embed ω_{R} as an ideal in R.
- Extend F - dual to $\phi_{R}: R^{1 / p^{e}} \rightarrow R$.
- Extend further to $\phi_{S}: S^{1 / p^{e}} \rightarrow S$. $(R=S / I)$
- Represent $\phi_{S} \in\left[{ }^{\left[p^{e}\right]}: I\right.$.

Here is an example of an F-rational (but not F-regular) ring.

```
i8 : S = ZZ/3[a,b,c,d,t]; m = 4; n = 3;
i11 : M = matrix{ {a^2 + t^m, b, d},
                                {c, a^2, b^^n-d} };
    2 3
o11 : Matrix S <--- S
i12 : I = minors(2, M);
i13 : R = S/I;
i14 : isFRational(R)
o14 = true
```

Appeared in work of Anurag Singh (deform F-regularity)

Characteristic zero applications

Characteristic $p>0$ conclusions imply results in characteristic zero.

Theorem (Ma-•)

Suppose R is a ring of mixed characteristic finite type over \mathbb{Z}. Suppose $p \in \mathbb{Z}$ is a regular element and $Q \subseteq R$ is a prime not containing any nonzero prime of \mathbb{Z} so that $(p)+Q \neq R$.

If $R / p R$ is F-rational, then $R_{Q}=R_{Q} \otimes \mathbb{Q}$ has rational singularities.

- Analogous statement for log terminal/F-regular singularities, if the \mathbb{Q}-Gorenstein not divisible by p.
- Not known for log canonical/F-pure singularities (need mixed char inversion of adjunction).

Characteristic zero applications

Characteristic $p>0$ conclusions imply results in characteristic zero.

Theorem (Ma-॰)

Suppose R is a ring of mixed characteristic finite type over \mathbb{Z}. Suppose $p \in \mathbb{Z}$ is a regular element and $Q \subseteq R$ is a prime not containing any nonzero prime of \mathbb{Z} so that $(p)+Q \neq R$.

If $R / p R$ is F-rational, then $R_{Q}=R_{Q} \otimes \mathbb{Q}$ has rational singularities.

- Analogous statement for log terminal/ F-regular singularities, if the \mathbb{Q}-Gorenstein not divisible by p.
- Not known for log canonical/F-pure singularities (need mixed char inversion of adjunction).

Characteristic zero applications

Characteristic $p>0$ conclusions imply results in characteristic zero.

Theorem (Ma-॰)

Suppose R is a ring of mixed characteristic finite type over \mathbb{Z}. Suppose $p \in \mathbb{Z}$ is a regular element and $Q \subseteq R$ is a prime not containing any nonzero prime of \mathbb{Z} so that $(p)+Q \neq R$.

If $R / p R$ is F-rational, then $R_{Q}=R_{Q} \otimes \mathbb{Q}$ has rational singularities.

- Analogous statement for log terminal/ F-regular singularities, if the \mathbb{Q}-Gorenstein not divisible by p.
- Not known for log canonical/F-pure singularities (need mixed char inversion of adjunction).

F-injective

We can also study F-injective singularities (analog of Du Bois).
Definition
R is F-injective if

$$
H^{-i} \omega_{R^{1 / p}}^{\bullet} \rightarrow H^{-i} \omega_{R}^{\bullet}
$$

surjects for all i.

- If R is CM, this just means

F-injective

We can also study F-injective singularities (analog of Du Bois).

Definition

R is F-injective if

$$
H^{-i} \omega_{R^{1 / p}}^{\bullet} \rightarrow H^{-i} \omega_{R}^{\bullet}
$$

surjects for all i.

- If R is CM , this just means

$$
\left(\omega_{R^{1 / p^{e}}}\right) \xrightarrow{F^{e}-\text { dual }} \omega_{R}
$$

surjects.

- Example

F-injective

We can also study F-injective singularities (analog of Du Bois).

Definition

R is F-injective if

$$
H^{-i} \omega_{R^{1 / p}} \rightarrow H^{-i} \omega_{R}^{\bullet}
$$

surjects for all i.

- If R is CM , this just means

$$
\left(\omega_{R^{1 / p^{e}}}\right) \xrightarrow{F^{e}-\text { dual }} \omega_{R}
$$

surjects.

- Example

```
i10 : R = ZZ/[x,y,z]/ideal( (x^3+ y^3+z^3);
i11 : isFInjective(R)
o11 = true
```


Test ideals

We can compute test ideals too. Including of pairs.

- In a \mathbb{Q}-Gorenstein ring.
- $\tau\left(R, f^{t}\right)$ equals sum of images of maps
c as before.
- We use it to check F-regularity.
- Trick is stabilize image sums above.
- Can compute parameter test modules and parameter test ideals too.

Test ideals

We can compute test ideals too. Including of pairs.

- In a \mathbb{Q}-Gorenstein ring.
- $\tau\left(R, f^{t}\right)$ equals sum of images of maps
c as before.
- We use it to check F-regularity.
- Trick is stabilize image sums above.
- Can compute parameter test modules and parameter test ideals too.

We can compute test ideals too. Including of pairs.

- In a \mathbb{Q}-Gorenstein ring.
- $\tau\left(R, f^{t}\right)$ equals sum of images of maps

$$
\phi:\left(c f^{\left[t\left(p^{e}-1\right)\right]} R\right)^{1 / p^{e}} \rightarrow R .
$$

c as before.

- We use it to check F-regularity.
- Trick is stabilize image sums above.
- Can compute parameter test modules and parameter test ideals too.

We can compute test ideals too. Including of pairs.

- In a \mathbb{Q}-Gorenstein ring.
- $\tau\left(R, f^{t}\right)$ equals sum of images of maps

$$
\phi:\left(c f^{\left[t\left(p^{e}-1\right)\right]} R\right)^{1 / p^{e}} \rightarrow R .
$$

c as before.

- We use it to check F-regularity.
- Trick is stabilize image sums above.
- Can compute parameter test modules and parameter test ideals too.

We can compute test ideals too. Including of pairs.

- In a \mathbb{Q}-Gorenstein ring.
- $\tau\left(R, f^{t}\right)$ equals sum of images of maps

$$
\phi:\left(c f^{\left[t\left(p^{e}-1\right)\right]} R\right)^{1 / p^{e}} \rightarrow R .
$$

c as before.

- We use it to check F-regularity.
- $\left(R, f^{t}\right)$ is F-regular if and only if $\tau\left(R, f^{t}\right)=R$.
- Trick is stabilize image sums above.
- Can compute parameter test modules and parameter test ideals too.

We can compute test ideals too. Including of pairs.

- In a \mathbb{Q}-Gorenstein ring.
- $\tau\left(R, f^{t}\right)$ equals sum of images of maps

$$
\phi:\left(c f^{\left[t\left(p^{e}-1\right)\right]} R\right)^{1 / p^{e}} \rightarrow R .
$$

c as before.

- We use it to check F-regularity.
- $\left(R, f^{t}\right)$ is F-regular if and only if $\tau\left(R, f^{t}\right)=R$.
- Trick is stabilize image sums above.
- Can compute parameter test modules and parameter test ideals too.

We can compute test ideals too. Including of pairs.

- In a \mathbb{Q}-Gorenstein ring.
- $\tau\left(R, f^{t}\right)$ equals sum of images of maps

$$
\phi:\left(c f^{\left[t\left(p^{e}-1\right)\right]} R\right)^{1 / p^{e}} \rightarrow R .
$$

c as before.

- We use it to check F-regularity.
- $\left(R, f^{t}\right)$ is F-regular if and only if $\tau\left(R, f^{f}\right)=R$.
- Trick is stabilize image sums above.
- Can compute parameter test modules and parameter test ideals too.

Example

```
i2 : R = ZZ/5[x,y];
i3 : \(f=y^{\wedge} 2-x^{\wedge} 3\);
    32
o3 \(=-x+y\)
i4 : testIdeal(4/5, f);
○4 = ideal (y, x)
i5 : testIdeal(4/5-1/10000, f)
o5 = ideal 1
```

- We can compute $\tau\left(R, f^{t-\epsilon}\right)$, which is used to compute jumping numbers and F-pure thresholds.
- Needs HSLGModule function.

```
i2 : R = ZZ/5[x,y];
i3 : \(\mathrm{f}=\mathrm{y}^{\wedge} 2-\mathrm{x}^{\wedge} 3\);
    3 2
o3 = - x + y
i4 : testIdeal(4/5, f);
o4 = ideal (y, x)
i5 : testIdeal(4/5-1/10000, f)
o5 = ideal 1
```

- We can compute $\tau\left(R, f^{t-\epsilon}\right)$, which is used to compute jumping numbers and F-pure thresholds.

```
i2 : R = ZZ/5[x,y];
i3 : \(\mathrm{f}=\mathrm{y}^{\wedge} 2-\mathrm{x}^{\wedge} 3\);
    32
o3 \(=-x+y\)
i4 : testIdeal(4/5, f);
o4 = ideal (y, x)
i5 : testIdeal(4/5-1/10000, f)
o5 = ideal 1
```

- We can compute $\tau\left(R, f^{t-\epsilon}\right)$, which is used to compute jumping numbers and F-pure thresholds.
- Needs HSLGModule function.

We conclude with a discussion of the FThresholds package.

- If R is F-regular, F-pure threshold (FPT) is the smallest $t \geq 0$ where $\tau\left(R, f^{t}\right) \neq R$.
- We do a binary-style search to a certain depth.
- However, if f is a special form, we have other algorithms.
- We also guess + check.

We conclude with a discussion of the FThresholds package.

- If R is F-regular, F-pure threshold (FPT) is the smallest $t \geq 0$ where $\tau\left(R, f^{t}\right) \neq R$.
- We do a binary-style search to a certain depth.
- However, if f is a special form, we have other algorithms.
- We also guess + check.

We conclude with a discussion of the FThresholds package.

- If R is F-regular, F-pure threshold (FPT) is the smallest $t \geq 0$ where $\tau\left(R, f^{t}\right) \neq R$.
- We do a binary-style search to a certain depth.
- However, if f is a special form, we have other algorithms.
- We also guess + check.

We conclude with a discussion of the FThresholds package.

- If R is F-regular, F-pure threshold (FPT) is the smallest $t \geq 0$ where $\tau\left(R, f^{t}\right) \neq R$.
- We do a binary-style search to a certain depth.
- However, if f is a special form, we have other algorithms.
- We also guess + check.

We conclude with a discussion of the FThresholds package.

- If R is F-regular, F-pure threshold (FPT) is the smallest $t \geq 0$ where $\tau\left(R, f^{t}\right) \neq R$.
- We do a binary-style search to a certain depth.
- However, if f is a special form, we have other algorithms.
- We also guess + check.

Example FPT

```
i2 : R = ZZ/5[x,y,z]
i3 : \(f=x^{\wedge} 5-y^{\wedge} 6+x^{\wedge} 3 * z^{\wedge} 5+2 * z^{\wedge} 8\)
    35665
03 = x \(\mathrm{z}+2 \mathrm{z}-\mathrm{y}+\mathrm{x}\)
i4 : fpt(f)
    1
○4 = -
    5
```

FPT of the cusp (in a nonstandard form).
i1 : $R=Z Z / 7[x, y]$
i4 : fpt ((x+y)^3- $\left.y^{\wedge} 2\right)$
5
$\circ 4=-$
6

You can go to:

http://www.math.utah.edu/~schwede/M2.html to try it yourself!

