
DIVISOR PACKAGE FOR MACAULAY2

KARL SCHWEDE AND ZHAONING YANG

Abstract. This note describes a Macaulay2 package for handling divisors. Group operations for
divisors are included. There are methods for converting divisors to reflexive or invertible sheaves.
Additionally, there are methods for checking whether divisors are Cartier, Q-Cartier, simple normal
crossings, generate base point free linear systems or satisfy numerous other conditions.

1. Introduction

Divisors are fundamental objects of study within algebraic geometry and commutative algebra.
In this package for Macaulay2 [GS] we provide a wrapper object for studying Weil and Cartier
divisors. We include tools for studying divisors on both affine and projective varieties.

In this package, divisors are stored (roughly) as height one prime ideals with coefficients (from
Z, Q or R). We include group and scaling operations for divisors, as well as various methods for
constructing modules OX(D) from divisors D (and vice versa). We also include a number of checks
for determining whether divisors are linearly or Q-linearly equivalent, and for checking whether
divisors are Cartier or Q-Cartier (or finding the non-Cartier locus). Finally, we also include a
number of functions for handling reflexive modules, ideals and their powers.

We realize there is a Divisor class defined in a tutorial in the Macaulay2 help system. In that
implementation, divisors are given as a pair of ideals – an ideal corresponding to the positive part
and an ideal corresponding to the negative part. Our approach offers the advantage that it is easier
for the user to see the structure of the divisor. Additionally, certain operations are much faster via
our approach.

We should warn the user that when a divisor is created, Gröbner bases are constructed for each
prime ideal defining a component of the divisor. Hence the construction phase may be slower than
other potential implementations (and in fact slower than our initial implementation). However, we
feel that this choice offers advantages of execution speed for several functions as well as substantial
improvements in code readability.

Throughout this note, and within the package, it is tacitly assumed that the ambient ring on
which we are working is normal. This includes the projective case so care should be taken to make
sure the graded ring you are working on is S2. While one can talk about subvarieties of codimension
1 on more general schemes, the divisor–reflexive sheaf correspondence is much more complicated
in that case, and so we restrict ourselves to the normal case. For an introduction to the theory
of rank-1-reflexive sheaves on “nice” schemes, see [Har94, Har07] and of course for a more basic
introduction see for instance [Har77, Chapter II, Sections 5–7].

This paper is structured as follows. We first give a brief introduction to the construction, con-
version and group operation functions in Section 2. We then discuss the methods for converting
divisors D to modules OX(D) and converting modules back to divisors in Section 3. Section 4

Date: October 31, 2014.
2010 Mathematics Subject Classification. 14C20.
Key words and phrases. Divisors, Reflexive Modules, Macaulay2.
The first named author was supported in part by the NSF FRG Grant DMS #1265261, NSF CAREER Grant

DMS #1252860 and a Sloan Fellowship.
The second named author was supported in part by the NSF CAREER Grant DMS #1252860.

1

describes the properties we can check divisors for (for instance isCartier or isSNC). We conclude
with a section on future plans.

Acknowledgements. We would like to thank Tommaso de Fernex, David Eisenbud, Daniel Grayson,
Anurag Singh and Mike Stillman for useful conversations and comments on the development of this
package.

2. Construction, conversion and group operations for divisors

This package includes a number of ways to construct a divisor (an object of class WDiv), illustrated
below.

i1 : needsPackage "Divisor";

i2 : R = QQ[x,y,u,v]/ideal(x*y-u*v);

i3 : D = divisor({2, 3}, {ideal(x,u), ideal(x, v)})

o3 = 2*Div(x, u) + 3*Div(x, v) of R

o3 : WDiv

i5 : F = divisor(x)

o5 = 1*Div(v, x) + 1*Div(u, x) of R

o5 : WDiv

i6 : F = divisor((ideal(x,u))^2*(ideal(x,v))^3)

o6 = 2*Div(u, x) + 3*Div(v, x) of R

o6 : WDiv

The output is a formal sum of height one prime ideals. In the first construction method, failure to
provide integer coefficients or height one prime ideals will result in an error unless the Unsafe =>

option is set to true. The third construction method finds a divisor that agrees with that ideal in
codimension 1.

We have different classes for Q-divisors and R-divisors (QDiv and RDiv respectively), these are
constructed via the rationalDivisor, realDivisor functions or via the divisor function with
the CoeffType=> option set. See the documentation.

All types of divisors are descended from HashTable. Internally, they are HashTables where each
key is a list of Gröbner basis generators for a prime height one ideal and each associated value is a
list, the first entry of which is the coefficient of the prime divisor and the second entry is the prime
ideal used to display the divisor (it tries to match how the user entered it for ease of reading).
Besides the keys corresponding prime divisors, there is a key which specifies the ambient ring.

One can convert one type of divisor to another more general class, either by multiplication by
appropriate coefficients or by calling appropriate functions

i4 : D = divisor({1, -3}, {ideal(x,u), ideal(y,u)});

i5 : 1/1*D

o5 = -3*Div(y, u) + 1*Div(x, u) of R

o5 : QDiv

i6 : toQDiv(D)

o6 = -3*Div(y, u) + 1*Div(x, u) of R

o6 : QDiv

One can convert Q or R-divisors back to Weil divisors as follows.

i3 : D = divisor({2/3, -1/2}, {ideal(x,u), ideal(y, v)}, CoeffType=>QQ)

o3 = 2/3*Div(x, u) + -1/2*Div(y, v) of R

o3 : QDiv

i4 : isWDiv(D)

o4 = false
2

i5 : isWDiv(6*D)

o5 = true

i6 : toWDiv(6*D)

o6 = 4*Div(x, u) + -3*Div(y, v) of R

o6 : WDiv

See the documentation for more examples. Alternately, the functions ceilingDiv and floorDiv

will convert any Q or R-divisor to a Weil divisor by taking the ceiling or floor of the coefficients
respectively. More generally one can call the method applyToCoefficients to apply any function
to the coefficients of a divisor (since divisors are a type of HashTable, this is just done via the
applyValues function).

Divisors form a group and one can add WDiv/QDiv/RDiv to each other to obtain new divisors.
Likewise one can scale by integers, rational numbers or real numbers.

i3 : D = divisor({1, -2}, {ideal(x,u), ideal(x, v)}); E = divisor(u);

i5 : 3*D+E

o5 = -6*Div(x, v) + 4*Div(x, u) + 1*Div(u, y) of R

o5 : WDiv

i6 : D - (1/2)*E

o6 = -2*Div(x, v) + 1/2*Div(x, u) + -1/2*Div(u, y) of R

o6 : QDiv

Note that since divisors are subclasses of HashTables, these operations are easily executed inter-
nally via the merge and applyValues commands.

3. Modules, ideals, divisors and applications

It is well known that divisors are so useful because of their connections with invertible and reflex-
ive sheaves. This package includes many functions for conversion between these types of objects.
For instance:

i1 : R = QQ[x,y,z]/ideal(x*y-z^2); needsPackage "Divisor";

i3 : D = divisor(ideal(x, z));

i4 : divisorToModule(D)

o4 = image {-1} | y z |

{-1} | z x |

o4 : R-module, submodule of R

i5 : moduleToDivisor(o4)

o5 = -1*Div(z, y) of R

o5 : WDiv

i6 : moduleToDivisor(o4, IsGraded=>true)

o6 = 2*Div(z, x) + -1*Div(z, y) of R

o6 : WDiv

The function divisorToModule and moduleToDivisor do exactly what their names suggest. They
convert divisors D to the corresponding reflexive modules OX(D) and back. Note that while
divisorToModule produces a module isomorphic toOX(D), which is a unique output (and the grad-
ings are set appropriately), moduleToDivisor is only guaranteed to produce a divisor E such that
OX(E) is isomorphic to the given moduleM . In particular, moduleToDivisor(divisorToModule(D))
will only produce a divisor linearly equivalent to D. Note that setting the IsGraded option to true

in moduleToDivisor, will find a divisor E so that OX(E) is isomorphic to M as a graded module.
The execution of divisorToModule(D) is done via a straightforward strategy. If D corresponds to

primes P1, . . . , Pm with coefficients a1, . . . , am, then we can compute
⊗
P−aii (keeping in mind nega-

tive exponents mean applying HomR(, R)) and then reflexifying (see the methods reflexifyModule
3

and reflexifyIdeal). We do several things make this computation faster. Firstly, we break up the
divisor into the positive and negative parts, and handle them separately (reflexifying as little as

possible). Then, instead of computing P
|ai|
i , which can have huge numbers of generators, we com-

pute P
[|ai|]
i which means form an ideal generated by the generators of Pi raised to the |ai|th powers.

Since this agrees with P
|ai|
i in codimension 1, it will give the correct answer up to reflexification.

We have noticed very substantial speed improvements using this technique.
The function moduleToDivisor works as follows. First it embeds the module as an ideal I ⊆ R via

the function moduleToIdeal1. After we have an ideal, we call idealToDivisor. This finds a divisor
D such that OX(D) is isomorphic to the given ideal I (in a non-graded sense). idealToDivisor
does this by looking at the minimal height one primes Qi of the ideal I and finding the maximum

power ni such that I ⊆ Q
(ni)
i = (Qni

i)∗∗. Here ∗∗ denotes reflexification/S2ification of the ideal.
Finding this maximal power is done by a binary search. Again for speed we compute (Qni

i)∗∗ via

(Q
[ni]
i)∗∗. If the IsGraded flag is set to true, moduleToDivisor finally corrects the degree of the

divisor by adding or subtracting the divisor of an element of appropriate degree (you can see this
being done in the example above). Finding the element of appropriate degree is accomplished via
the function findElementOfDegree which uses Smith normal form in the multi-degree setting to
solve the system of linear diophantine equations and find a monomial of the given multi-degree.

Instead of calling moduleToDivisor, one can call moduleWithSectionToDivisor which finds the
unique effective divisor D corresponding to a global section γ ∈ M of our module. The function
idealWithSectionToDivisor behaves similarly. The strategy is the same as above, additionally
one tracks the section and adds an principal divisor corresponding to the section at the end.

It is worth mentioning that the function canonicalDivisor simply computes the canonical
module via an appropriate Ext and then calls moduleToDivisor. If you wish to construct a canonical
divisor on a projective variety, make sure to set the IsGraded option to true.

3.1. Pulling back divisors. Utilizing the module and divisor correspondence divPullBack pulls
back a divisor along a map SpecS −→ SpecR induced by a ring map R −→ S. The user has a choice
of two algorithms built into this function. The first works for nearly any map provided the divisor
is Cartier and it also works for arbitrary divisors in the flat or finite case. The second, which is
the default strategy, only gives accurate answers if the map is flat, or if the map is finite (or if the
prime components of the divisor are Cartier). It can be faster than the first algorithm, especially
for divisors with large coefficients. To use the first algorithm, use is Strategy=>Sheaves, to use
the second, use the Strategy=>Primes.

Let us briefly describe these two strategies. The first algorithm pulls back the sheafO(D), keeping
track of a section appropriately. The second algorithm extends each prime ideal defining a prime
divisor of D to an ideal of S, then it calls idealToDivisor on each such ideal and sums them
keeping track of coefficients appropriately.

Consider the following example where we look at pulling back a divisor after blowing up the
origin (we only consider one chart of the blowup).

i2 : R = QQ[x,y];

i3 : S = QQ[a,b];

i4 : f = map(S, R, {a*b, b});

i5 : D = divisor(x*y*(x+y)*(x-y))

o5 = 1*Div(y) + 1*Div(x+y) + 1*Div(-x+y) + 1*Div(x) of R

1A variant of this function appeared in the Macaulay2 documentation in the Divisor tutorial, it also appeared
in the work of Moty Katzman. Our version is slightly more robust than those as it tries to embed the module into
the ring in several ways, including some random attempts (see the documentation for how to control the number of
random attempts).

4

o5 : WDiv

i6 : divPullBack(f, D)

o6 = 1*Div(a-1) + 1*Div(a+1) + 1*Div(a) + 4*Div(b) of S

o6 : WDiv

Note one of the components was lost in this pull-back, as it should have been. The coefficient of
the exceptional divisor is also 4, as it should be.

3.2. Global sections. There are only a few built in functions for dealing with global sections of
modules corresponding to divisors in the current version (in the future we hope to add more tools to
do this). Of course, the user may call things like basis(0, divisorToModule(D)) to get the global
sections of a module corresponding to a divisor. In this section, we describe briefly two functions
for handling global properties of divisors.

The function mapToProjectiveSpace gets the global sections of O(D) and then computes the
corresponding map to projective space. This of course assumes the divisor is graded. In the example
below we project P1 × P1 to one of its terms by calling mapToProjectiveSpace along a divisor of
one of the rulings.

i2 : R = QQ[x,y,u,v]/ideal(x*y-u*v);

i3 : D = divisor(ideal(x,u));

i4 : mapToProjectiveSpace(D)

o4 = map(R,QQ[YY , YY],{u, y})

1 2

o4 : RingMap R <--- QQ[YY , YY]

1 2

Still assuming the divisor is graded, the function baseLocus finds a defining ideal for the locus
where O(D) is not generated by global sections. This is done by computing the cokernel of O⊕n −→
O(D) where H0(O(D)) has a basis of n distinct global sections and the map is the obvious one.
In the following example, we compute the base locus of a point on an elliptic curve, and also two
times a point on an elliptic curve (which is degree 2 and hence base point free).

i2 : R = QQ[x,y,z]/ideal(y^2*z-x*(x+z)*(x-z));

i3 : D = divisor(ideal(x,y));

i4 : baseLocus(D)

o4 = ideal (y, x)

o4 : Ideal of R

i5 : baseLocus(2*D)

o5 = ideal 1

o5 : Ideal of R

4. Checking properties of divisors

The package Divisor can check divisors for several properties. First we describe the method
isCartier.

i2 : R = QQ[x,y,z]/ideal(x^2-y*z);

i3 : D = divisor(ideal(x,y));

i4 : isCartier(D)

o4 = false

i5 : nonCartierLocus(D)

o5 = ideal (z, y, x)

o5 : Ideal of R

i6 : isCartier(2*D)
5

o6 = true

The algorithm behind this function is as follows. We compute OX(−D) ·OX(D) and check whether
it is equal to OX . In general, OX(−D) · OX(D) always defines an ideal defining the non-Cartier
locus of D, hence the command nonCartierLocus. If the option IsGraded=>true then the relevant
functions saturate the ideals with respect to the irrelevant ideal.

We also briefly describe the method isQCartier.

i6 : isQCartier(5, D)

o6 = 2

This checks whether any multiples n ·D of a Weil divisor or Q-divisor D are Cartier for any integer
n less than or equal to the first argument (in this case n ≤ 5), it may actually search a little higher
than the first argument in the Q-Cartier case due to rounding issues. If it finds that nD is Cartier,
it returns the integer n. If it doesn’t find any Cartier divisors, it returns 0.

Some other useful functions are isDivPrincipal and isLinearEquivalent. Checking whether
a divisor is principal just comes down to checking whether OX(D) is a free module and checking
whether D ∼ E just boils down to checking whether D − E is principal. In the graded case
Macaulay2 does this via the basis command, unfortunately we don’t know how to do this in
general. Therefore isDivPrincipal and isLinearEquivalent can give a false negative for non-
graded divisors (it warns you if it does this). Note that the option IsGraded can be applied within
isLinearEquivlavent which checks that OX(D − E) is principal of degree zero.

We can also check whether a divisor D has simple normal crossings by calling isSNC. This first
checks that the ambient space of D is regular, then it checks that each prime divisor of D defines
a regular scheme, finally it checks that every intersection of of prime divisors of D also defines a
regular scheme of the appropriate dimension.

5. Future plans

There are a number of ways that this package should be expanded. One of the most important
things to be done is to further develop the global methods related to divisors. For instance it would
be very useful to be able to check whether a divisor is very ample (and thus try to see if a divisor
is ample by checking multiples of it). Some basic intersection theory between divisors and smooth
curves would also be natural to include.

In another direction, we could add a separate cache structure recording whether or not, for
example, the divisor is Cartier or Q-Cartier. This might be valuable because certain functions
could be made faster for cases when divisors were known to satisfy various properties (at least if
we knew the answer was already computed).

References

[GS] D. R. Grayson and M. E. Stillman: Macaulay2, a software system for research in algebraic geometry.
[Har77] R. Hartshorne: Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics,

No. 52. MR0463157 (57 #3116)

[Har94] R. Hartshorne: Generalized divisors on Gorenstein schemes, Proceedings of Conference on Algebraic Ge-
ometry and Ring Theory in honor of Michael Artin, Part III (Antwerp, 1992), vol. 8, 1994, pp. 287–339.
MR1291023 (95k:14008)

[Har07] R. Hartshorne: Generalized divisors and biliaison, Illinois J. Math. 51 (2007), no. 1, 83–98 (electronic).
MR2346188

Department of Mathematics, University of Utah, 155 S 1400 E Room 233, Salt Lake City, UT, 84112
E-mail address: schwede@math.utah.edu

Department of Mathematics, Pennsylvania State University, State College, PA, 16802
E-mail address: zyy5054@psu.edu

6

	1. Introduction
	Acknowledgements

	2. Construction, conversion and group operations for divisors
	3. Modules, ideals, divisors and applications
	3.1. Pulling back divisors
	3.2. Global sections

	4. Checking properties of divisors
	5. Future plans
	References

