
JUNE 14TH COMPUTER LAB - FINDING GCDS, BEZOUT NUMBERS
AND INVERSES

Number theorists are like lotus-eaters – having tasted this food they can never give it up. –
Leopold Kronecker

We want to write our variant of the GCD function that returns the Bezout numbers (the s
and t so that sa+ tb = 1). I structured mine again as a recursive function. However, at each
step, I didn’t just have my function return the gcd. I had it return a list of three numbers.

[g,s,t]

where g is the the gcd and s and t are such that sa + tb = g. Thus before we can write
our function, we have to think.

Say we are computing the gcd of a and b and we write a = qb+ r. We then call fancygcd
on b, r. fancygcd will return a list of integers [g, s1, t1] where s1b + t1r = g. We plug in
a− qb for r and get that s1b + t1(a− qb) = g. If we manipulate the left side, we obtain:

t1a + (s1 − t1q)b = g

In other words, we should pick s = t1 and t = (s1− t1q) and then return [g, s, t]. Remember,
to just take the integer part of division, you can always run a // b in Sage/Python. In
other words q = a//b is what we are going to want to call.

My function looks like this (you’ll need to fill in the ...):

def fancyGCD(a,b):

if (a == b):

...

...

if (b > a):

r = b%a

q = b//a

ll = fancyGCD(a,r)

g = ll[0]

t = ll[2]

s = ll[1]-ll[2]*q

return [g,s,t]

Your job. Write your own function. Test it out on examples.

Finally, we want to make a function which finds the inverse of a modulo n, if it exists. To
do this, we simply compute the fancyGCD. We should check to make sure the gcd is 1, and
if it is, we now know that sa + tn = 1. So the inverse of a is ... :-)

Next... Write your own inverseMod function. In other words:

def inverseMod(a,n):

...

return ...

1


