
JUNE 8TH VIGENÉRE BREAKING

I really hate this darn machine. I wish that they would sell it. It never does quite what I want.
But only what I tell it.– Anonymous

We are going to write some functions in Sage that will help us break Vigenére ciphers.
First we need to figure out what the likely key length is. Remember, we do this with autocorre-

lation. First we write a function in Sage which takes ciphertext, shifts it over by a fixed amount,
and counts how many times two letters in the same column are the same.

K N U N U G V T X U T B O O G A R X X E T N E W Q N M W E L

K N U N U G V T X U T B O O G A R X X E T N E W Q N M

For instance, there are two such places in the above text, at the bolded T and E. We are going to
write a function which counts how incidences you have for a given shift. In other words

incidenceCount(’KNUNUGVTXUTBOOGARXXETNEWQNMWEL’,3)

should output the number 2.
I wrote my function like this (fill in the ... with an appropriate loop).

def countIncidences(s, n):

ct = 0

...

print str(n) + ": " + str(ct)

The reason we wrote this function is because if you have a keylength of n, then the incidence
count at n, 2n, 3n etc. will tend to be more than other incidence counts. Hence I wrote a function
that calls incidenceCount over and over in a loop (with different shifts).

def autoCorrelation(s,maxInt):

...

When I ran autoCorrelation(myStr, 12) on the ciphertext myStr below.
VHXF IYHE KGNM CCVK DXPT LQFE KFXC RXPO MUOV JAGI ETDL XCSM JEYG EEKN ZUOY JUFC NGCT

NTEB JAWY OKME WJAK FFHT NXCR EATP QYXC RLHO KVHX UOEG PNTP HUEH HIGH ULKN ZNIY GIGV

OTPI GCNB OAMG BHFY YQRM JILK HTFD XRRB XEWO YLGL YQFK GSMC NWJE TNTA KHTF DXUI KGDB

VWBV HTPA KFON TTAC TYCR XZCX GDXF MHFE KCTB QNUW TGQW MJAM KHTF FBPI LJEW VHXD ETWT

RQFM JEWT ETOV TPIL JEWC NWDR XCTA NELU HHTR HTAG FDBU GNUT YKLE GDFA HXCR MWNT DLXV

OXPD NTEM JETU PXET HHTA GBXK NZKH TFCK GAMG DBTU LJEW QUMQ FMJE KQOF CNWE OGVI GWEW

CLHP GMKM XVRT XEKU IGIM RDEW EHTO BXTU GCBE GTHE OFRO LGMR OIGF THUL XGPT VLXP GMJL

TUSB VUWG SNEC XGDX FTHV HXVU FWLM KHTF BXHO KGEG FUKG DTPD BVHK GWFA SXNF HPTA GBXF

IGOY VNOM JELG NWGA OQUK KNZV OLGE DCFX YMHO EGVS HHFH TGXV FNNN XUSU WTBV WTUI GXAB

PILN EIVI GFEX FBNV IPCS WKSM WRUG DUAT AGWB NDXU TWTE TOSB VHHW GAVI LCWX NISC BXVH

BPTA GBEQ OFQF AGAE VHPC LDKN ZKNM JELV RXGT LQFB PGHN SMCD M

I obtained the output:

2: 22

3: 44

4: 26

5: 17

6: 37

7: 24
1

2 JUNE 8TH VIGENÉRE BREAKING

8: 23

9: 47

10: 23

11: 23

12: 40

Notice that I have bigger incidence counts for shifts of 3, 6, 9, 12. This means that the key length
is probably 3 (and this is correct).

1. Write your own functions.

2. Test your function on some large pieces of text you encrypt with your Vigenére function from
yesterday. See if you can guess the key length.

Now that we know the key length, we need to find the key. This is done with simple frequency
analysis. Note that if we encrypt with a key of length 3, then the 1st, 4th, 7th, 10th, etc. letter
will all have been shifted by the same amount. Likewise for the 2nd, 5th, 8th, 11th etc. and the
3rd, 6th, 9th, 12th, etc. We are going to write a function that figures out what letters are most
common in the 1st, 4th, 7th, etc. spots, and in the 2nd, 5th, 8th, etc spots, and so on.

I created a function that would take a string s, an expected key length k and a number t between
0 and k. It will find out how many of each letter are in the tth spot, the (t + k)th spot, the (t

+ 2k)th spot and so on. You can then use that to guess the original key and thus decrypt the
message.

I wrote my function something like this. Again, fill in your own

#my function assumed only capital letters, and ignored spaces and punctuation.

def VigenereFrequency(s, k, t):

letterList = [0]*26 #creates a list with 26 zeros

while (t < len(s)): #now fill in the letter list

...

for i in range(0,26): #finally display the letter list

...

3. Write your own function.

4. Use your code to deduce the key size and then the key. Finally, use this to decrypt the ciphertext
available at:

http://www.math.utah.edu/~schwede/Camp2016/VigenereDecryptable.txt

