
JUNE 9TH MODULAR ARITHMETIC PROBLEM SET

Can you do Division? Divide a loaf by a knife - what’s the answer to that? – Lewis Carroll

Today we are going to learn an algorithm for finding gcd’s (greatest common divisors). One amazing
result of this algorithm is that it also will tell us how to invert a modulo n if gcd(a, n) = 1.

First we need to relearn division.

Definition. Given two integers a and b > 0, we can always write a = qb + r where 0 ≤ r < b. The
number q is called the quotient, the number r is called the remainder.

This is something I assume you already know, just written in a more formal way.

1. Find the q and the r for the following choices of a and b.

(i) a = 15, b = 7. (ii) a = 8, b = 1

(iii) a = −10, b = 4 (iv) a = 22, b = 11

We say that b divides a if when writing q and r above, r = 0. That is, we say that b divides a if a/b
has no remainder.

The strategy we will use to find gcds relies on the following fact.

gcd(a, b) is the same as gcd(a, b + a)

2. Let’s show that they are equal.

(i) Let d = gcd(a, b). See if you can explain why d divides b + a evenly. A good way to do it is
to write a = qd and b = q′d. Then add those two equations together.

(ii) On the other hand if e = gcd(a, b + a), explain why e divides a evenly.

(iii) Now conclude that d = e.

Hint: From (i), we know that d divides a and b + a. Hence d divides gcd(a, b) = e (you can use
this without proof). Now reverse the process.
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3. Convince yourself, as a group, that gcd(a, b) = gcd(a, b + ka) for any integer k (positive or
negative).

Here comes the algorithm.

Algorithm: Given two numbers a, b, if a = b then gcd(a, b) = a and we are done. Likewise if
a = 0, then gcd(a, b) = b or if b = 0, then gcd(a, b) = a. Otherwise one number is bigger. Let’s call
that one a. Write a = bq + r with 0 ≤ r < b. Then

gcd(a, b) = gcd(r, b)

so compute gcd(r, b). Keep going like this until you end up computing gcd(a, b). Note the numbers
get smaller with each step.

4. Use this algorithm to compute the gcds of the following pairs of numbers:

(i) 25, 49 (ii) 221, 187

(iii) 91, 247 (iv) 253, 161

Let’s work through one example. gcd(63 = a, 49 = b). 63 = q149 + r1 where q1 = 1 and so
r1 = 14. Next we compute gcd(49, 14 = r1), write 49 = q214 + r2 where q2 = 3, r2 = 7. Next we
compute gcd(14 = r1, 7 = r2). Finally we write 14 = q37 + r3 with q3 = 2 and r3 = 0. Now we stop
since next we compute gcd(7, 0) = 7. Let’s reverse the steps now.

7 = r2 = (49−q214) = (b−q2r1) = b−q2(63−q149) = b−q2(a−q1b) = (q1q2+1)b+(−q2)a = 2b+(−3)a.

Notice this really is right, 4 · 49 − 3 · 63 = 196 − 189 = 7. Something like this always works. It
means that

gcd(a, b) = sa + tb

for some appropriately chosen integers s, t. We’ll work on implementing this next week. But for
now, let’s just see what it’s good for right now.
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5. For the following pairs of numbers below, gcd(a, b) = 1. Find integers s and t with sa + tb = 1.
You can use the Euclidean algorithm or just guess and check.

(i) 5, 7 (ii) 9, 16

(iii) 15, 49 (iv) 10, 37

6. For each s,t pair you found in 5., show that s is the inverse of a modulo b. In other words, show
that sa ≡b 1. Hint: For example, let me do the first one for you. Say a = 5, b = 7. Choose s = 3,
t = −2. Then sa+ tb = 3 · 5 + (−2) · 7 = 15− 14 = 1. We need to verify that s · a ≡b 1. So let’s do
it.

3 · 5 = 15 ≡7 1.

There, we did (i).

7. Verify in general that if sa + tb = 1, then sa ≡b 1.


