Exercise 1.2.3 Let n be an integer. Then n is either even or odd. If n is even, then $n = 2k$, where k is an integer. Then $n^2 = 4k^2$, which is divisible by 4. If n is odd, then $n = 2k + 1$, where k is an integer. Hence $n^2 = 4k^2 + 4k + 1$, which, when divided by 4, leaves a remainder of 1.

Exercise 1.2.4 If both a and b were odd, then $a^2 = 4k^2 + 4k + 1$ and $b^2 = 4l^2 + 4l + 1$, where k and l are integers, hence

$$a^2 + b^2 = 4(k^2 + l^2) + 4(k + l) + 2 = 4(k^2 + l^2 + k + l) + 10,$$

which when divided by 4 yields a remainder of 2. On the other hand, if (a, b, c) is a Pythagorean triple, then

$$a^2 + b^2 = c^2,$$

and, by the previous exercise c^2 will leave a remainder of 0 or 1, when divided by 4. This is in contradiction to the fact that $a^2 + b^2$, when divided by 4 leaves a remainder of 2. Thus, the assumption that both a and b are odd cannot be correct, and either a or b must be even.

Exercise 1.3.1 If (a, b, c) is a Pythagorean triple, then, as was verified before (or by definition of Pythagorean triple) we have

$$\left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 = 1,$$

with $\frac{a}{c}$ and $\frac{b}{c}$ rational numbers. By what has been proved on pages 6 and 7, we must have that

$$\frac{a}{c} = \frac{1 - t^2}{1 + t^2}, \quad \frac{b}{c} = \frac{2t}{1 + t^2},$$

where $t = \frac{p}{q}$ is a rational number, i.e., p and q are integers. Substituting this expression into (1) and simplifying, one obtains the desired expression.

Exercise 1.3.2 Since

$$\frac{a}{c} = \frac{p^2 - q^2}{p^2 + q^2}, \quad \frac{b}{c} = \frac{2pq}{p^2 + q^2},$$

for some integers p, q, it follows that

$$a = \frac{p^2 - q^2}{p^2 + q^2}c, \quad b = \frac{2pq}{p^2 + q^2}c.$$

Since a and b are both integers and since $\frac{p^2 - q^2}{p^2 + q^2}$ and $\frac{2pq}{p^2 + q^2}$ are fractions whose absolute value is less than 1, it follows that c must be a multiple of $p^2 + q^2$, say $c = r(p^2 + q^2)$. This implies the assertion.
Exercise 1.3.3 Any right triangle with hypotenuse 1 may be obtained from Figure 1.4. The point P in this figure, on the other hand may be assigned coordinates

$$\left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right),$$

where t is the slope of the line defined in Figure 1.5. If the point P does not have rational coordinates, the the slope t will not be rational. On the other hand, there will be rational numbers arbitrarily close to t. Such slopes will yield triangles (of hypotenuse 1) which are arbitrarily close in area to the area of the original triangle. To note, the area of a given triangle, generated using the construction of the text with slope t is given by

$$A(t) = \frac{1-t^2}{1+t^2} \cdot \frac{2t}{1+t^2}.$$

Note that this is a continuous function of t, hence for a given irrational t_0 and a given accuracy, we can find rational values of t arbitrarily close to t_0 such that $A(t)$ will be within the given accuracy of $A(t_0)$.

Exercise 1.4.1 Let a denote the length of the side of the large solid squares and b that of the small solid square. The length of the side of the dotted squares will be the length of the right triangle with smaller legs a and b. Marking triangles appropriately (here it would be best to use a coloring scheme and a lot of words to explain it), one will find that $a^2 + b^2 = c^2$.

Exercise 1.4.2 Let

$$c = c_1 + c_2,$$

and denote by h the height of the large right triangle, indicated in the figure by the solid vertical line segment. By the laws of similar triangles, we have the following proportions:

$$\frac{c_1}{a} = \frac{a}{c},$$

i.e. $a^2 = cc_1$, and

$$\frac{c_2}{b} = \frac{b}{c},$$

i.e. $b^2 = cc_2$, and thus

$$a^2 + b^2 = cc_1 + cc_2 = c(c_1 + c_2) = c^2.$$