1) Find two complex numbers \(z = x + yi \) such that \(z^2 = i \).

2) (This is in the book) Let \(\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2} i \) be a third root of one. Use the theorem on residues to compute
\[
\int_0^\infty \frac{1}{z^3 + 1} \, dz
\]
by considering a contour consisting of a segment from \(R\omega \) to 0, a segment from 0 to \(R \) and then a part of the circle of radius \(R \) back to \(R\omega \).

3) Find the Laurent series expansion of
\[
f(z) = \frac{1}{z^2 - z^3}
\]
around 0 and 1.

4) Compute the residue of \(\frac{1}{\sin z} \) for \(z = k \cdot \pi \) where \(k \) is an integer. Then use the theorem on residues to compute
\[
\frac{1}{2\pi i} \int_C \frac{1}{\sin z} \, dz
\]
where the integral is computed in the counter clockwise direction along the circle \(|z| = 4 \).

5) Use a single residue to compute
\[
\frac{1}{2\pi i} \int_C \frac{z^6}{z^4 - 1} \, dz.
\]
where the integral is computed in the counter clockwise direction along the circle \(|z| = 2 \).

6) Show that \(z = 0 \) is the only zero of the polynomial \(z^5 + z^4 + 3z \) inside the circle \(|z| = 1 \). Use this to compute
\[
\frac{1}{2\pi i} \int_C \frac{1}{z^5 + z^4 + 3z} \, dz.
\]

7) Compute
\[
\frac{1}{2\pi i} \int_C \frac{5z^4 + 1}{z^5 + z + 1} \, dz
\]
where the integral is computed in the counter clockwise direction along the circle \(|z| = 2 \). Hint: where are the zeroes of \(z^5 + z + 1 \) located?

8) How many zeroes does \(z^5 - 9z^3 + z^2 + z + 1 \) have on \(2 < |z| < 4 \)?