MATH 5320 - FINAL EXAM REVIEW PROBLEMS.

1) Is the ring $\mathbb{Z}/6\mathbb{Z}$ isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$? Is the ring $\mathbb{Z}/8\mathbb{Z}$ isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$? Justify your answers.

Solution: The first two rings are isomorphic by the Chinese Reminder Theorem. The ring $\mathbb{Z}/8\mathbb{Z}$ is not a product of two rings since it has no non-trivial idempotents, check that.

2) Find the quotient \mathbb{Z}^3/N (in the normal form) where N is a submodule generated by the columns of the matrix

$$\left(\begin{array}{rrrr} 2 & 2 & 4 \\ 0 & 0 & 0 \\ 2 & 0 & 2 \end{array}\right)$$

Solution: Row-column reduction over \mathbb{Z} gives

$$\left(\begin{array}{rrrr} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

Hence $\mathbb{Z}^3/N \cong (\mathbb{Z}/2\mathbb{Z})^2 \times \mathbb{Z}$.

3) Using invertible row column operations over the ring $\mathbb{Z}[i]$, diagonalize into a normal form the matrix

$$\left(\begin{array}{cc} 3 & 2+i\\ 2-i & 9 \end{array}\right)$$

Solution: 3/(2+i) = 6/5 - 3/5i hence the closest gaussian integer is 1-i. Thus 3 = (1-i)(2+i) + i. Multiply the second column by 1-i and subtract it from the first,

$$\left(\begin{array}{rrr}i&2+i\\-7+8i&9\end{array}\right)$$

(-7+8i)/i = 8+7i. Multiply the first row by 8+7i and subtract from the second,

$$\left(\begin{array}{cc}i&2+i\\0&-22i\end{array}\right)$$

(2+i)/i = 1 - 2i. Multiply the first column by 1 - 2i and subtract from the second,

$$\left(\begin{array}{cc}i&0\\0&-22i\end{array}\right).$$

4) Let $\zeta_9 = e^{2\pi i/9}$ be a primitive 9-th root of 1. Prove that $[\mathbb{Q}(\zeta_9) : \mathbb{Q}] = 6$ i.e. find the minimal polynomial for ζ_9 and prove that it is irreducible.

Solution: $x^9 - 1 = (x^3 - 1)(x^6 + x^3 + 1)$, so ζ_9 is a root of $x^6 + x^3 + 1$. This polynomial is irreducible by Eisenstein criterion, after replacing x by x + 1, check this.

5) Prove that $x^5 + 5x + 5$ is irreducible over $K = \mathbb{Q}(\zeta_9)$.

Solution: This polynomial is irreducible over \mathbb{Q} by Eisenstein criterion. Let α be a root of this polynomial. Hence $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 5$. Using the previous exercise, and that 5 and 6 are relatively prime, $[\mathbb{Q}(\alpha, \zeta_9) : \mathbb{Q}] = 30$, hence $[K(\alpha) : K] = 5$.

6) Find the minimal polynomial, over \mathbb{Q} , of $1 + \alpha \in \mathbb{Q}(\alpha)$ where α is a root of $x^3 - 2x - 2 = 0$. Solution: Substitute x - 1 for x.

7) Let $\omega = e^{\frac{2\pi i}{3}}$. Prove that the ring $\mathbb{Z}[\omega]$ is euclidean i.e. for every $\alpha, \beta \in \mathbb{Z}[\omega]$, with $\beta \neq 0$, show that there exists $\gamma, \delta \in \mathbb{Z}[\omega]$, such that $\alpha = \gamma\beta + \delta$, and $N(\delta) < N(\beta)$, where $N(\alpha) = \alpha \bar{\alpha}$.

8) Let F be a field of characteristic p where p is a prime. Prove that $Fr: F \to F$ defined by $Fr(x) = x^p$ is a homomorphism.

9) Let $p \neq 3$ be a prime and F a finite field of order p^2 . Note that $p^2 \equiv 1 \pmod{3}$. Let $g \in F^{\times}$ be a primitive element i.e. of order $p^2 - 1$. Let $\omega = g^{\frac{p^2 - 1}{3}}$. Prove that $s = \omega - \omega^2$ is a square root of -3. Compute Fr(s) to determine p such that $s \in \mathbb{F}_p$.

Solution: $s^2 = \omega^2 - 2\omega^3 + \omega^4 = \omega^2 - 2 + \omega = -3$ since $\omega^2 + \omega + 1 = 0$. (Any cube root of 1 different from 1 is a root of $x^2 + x + 1$.) $Fr(s) = \omega^p - \omega^{2p}$ and this depends on p modulo 3. If p is 1 modulo 3 then Fr(s) = s, otherwise $Fr(s) = \omega^2 - \omega^4 = \omega^2 - \omega = -s$. Hence -3 is a square modulo p if and only if p is 1 modulo 3.

10) Let $\omega = e^{\frac{2\pi i}{3}}$. Use the previous problem to determine $p \neq 3$ such that $\mathbb{Z}[\omega]/(p)$ is a field, i.e. (p) is a maximal ideal in $\mathbb{Z}[\omega]$.

Solution: In fact we do not need the previous exercise. $\mathbb{Z}[\omega] \cong \mathbb{Z}[x](x^2 + x + 1)$ hence $\mathbb{Z}[\omega]/(p) \cong \mathbb{F}_p[x](x^2 + x + 1)$ and the latter is a field if and only if \mathbb{F}_p does not contain cube roots of 1 i.e. p is congruent 2 modulo 3.

11) Compute the number of monic, irreducible polynomials of degree 6 in $\mathbb{F}_p[x]$.

Solution: A root of any such polynomial generates \mathbb{F}_{p^6} . An element of \mathbb{F}_{p^6} either generates \mathbb{F}_{p^6} or it is contained in subfields \mathbb{F}_{p^3} and \mathbb{F}_{p^2} . These two fields intersect in \mathbb{F}_p . Thus the number of elements that generate \mathbb{F}_{p^6} is $p^6 - p^3 - p^2 + p$. Divide by 6 to answer the question.