MATH 5310 THIRD EXAM PROBLEMS

- 1) Let F[x] be the space of polynomials over a field F. Let p(x) be a polynomial of degree n. Let I be the set of all polynomials divisible by p(x). Show that I is a subspace of F[x]. The quotient space V = F[x]/I is the set of congruence classes of polynomials modulo p(x) i.e. $f(x) \equiv g(x) \pmod{p(x)}$ if p(x) divides the difference f(x) g(x). Prove that $1, x, \ldots, x^{n-1}$ is a basis of V.
- 2) Let V be the space of polynomials (over any field) modulo $x^{100}-1$. Let $T:V\to V$ be the linear transformation given by multiplication by x. Find the characteristic polynomial of this transformation, using the basis $1,x,\ldots,x^{99}$.
- 3) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be an orthogonal transformation given by a 120 degrees rotation in the counterclockwise direction about the ray through the vector (1, 1, 1). Write down the matrix of T in the standard basis of \mathbb{R}^3 .
- 4) Let T be a linear transformation on a complex vector space V such that $T^n = 1$. Show that, for every $v \in V$, $v + T(v) + \ldots + T^{n-1}(v)$ is an eigenvector with eigenvalue 1. If n is even, modify this a bit to construct an eigenvector with -1. If n is odd, can we have an eigenvector with eigenvalue -1?
- 5) Let V be a vector space over a field F and v_1, \ldots, v_n eigenvectors with pairwise different eigenvalues $\lambda_1, \ldots, \lambda_n$. Use the induction on n to prove that v_1, \ldots, v_n are linearly independent.
- 6) Let T be a linear transformation on a complex vector space V such that $T^2 = -1$. Show that any vector $v \in V$ can be written as a sum of two eigenvectors with eigenvalues i and -i. Then use the previous problem to show that V is isomorphic to a direct sum of two eigenspaces for T.
- 7) Let $A=\left[\begin{array}{cc} 4 & 1 \\ -2 & 1 \end{array}\right]$. Find a 2×2 matrix P such that $P^{-1}AP$ is diagonal. Then compute A^{100} .
- 8) Find invariant subspaces for $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by the matrix

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array} \right].$$