1) Use the Eiseinstein Criterion to prove that \(x^6 + x^3 + 1 \) is irreducible.

Solution: Replace \(x \) by \(x + 1 \), then apply the criterion with \(p = 3 \).

2) Let \(\varphi : \mathbb{Z}[x] \to \mathbb{C} \) be the map defined by \(f(x) \mapsto f(1 + i) \). Let \(I \) be the kernel of \(\varphi \). Prove that \(I \) is principal, i.e. find a generator \(g(x) \) and prove that any element in \(I \) is a multiple of \(g(x) \).

Solution: \(g(x) = (x - (1 + i))(x - (1 - i)) = x^2 - 2 + 2 \). Let \(f(x) \in \mathbb{Z}[x] \). Then, since \(g(x) \) is monic,

\[
f(x) = h(x)g(x) + ax + b
\]

for some \(h(x) \in \mathbb{Z}[x] \) and \(a, b \in \mathbb{Z} \). If \(f(x) \in I \) then, after substituting \(x = 1 + i \) in the above equation, we get \(0 = a(1 + i) + b \). Since \(1 + i \) and \(1 \) are linearly independent over \(\mathbb{Q} \), \(a = b = 0 \). Thus \(f(x) \) is a multiple of \(g(x) \).

3) Prove that the ring \(\mathbb{Z}[\sqrt{-2}] \) is euclidean with respect to the norm \(N(x + y\sqrt{-2}) = x^2 + 2y^2 \), i.e. for every \(\alpha, \beta \in \mathbb{Z}[\sqrt{-2}] \), with \(\beta \neq 0 \), show that there exists \(\gamma, \delta \in \mathbb{Z}[\sqrt{-2}] \), such that \(\alpha = \gamma \beta + \delta \), and \(N(\delta) < N(\beta) \). Do this for \(\alpha = 4 + 2\sqrt{-2} \) and \(\beta = 1 + \sqrt{-2} \).

Solution: \(\gamma \) is an element in \(\mathbb{Z}[\sqrt{-2}] \), closest to \(\alpha/\beta \). Let \(\eta = \alpha/\beta - \gamma \). Then \(\eta \) is in the Voronoi polygon for the lattice \(\mathbb{Z}[\sqrt{-2}] \):

\[
\{ x + y\sqrt{-2} \mid |x|, |y| \leq 1/2 \}.
\]

One sees that the polygon is strictly contained in the unit circle. Hence \(N(\eta) < 1 \) and this is equivalent to \(N(\delta) < N(\beta) \).

4) Let \(R = \mathbb{Z}[\sqrt{-2}] \). Let \(p \) be a prime. When is the principal ideal \((p) \subseteq R \) maximal? (Hint: use \(R \cong \mathbb{Z}[x]/(x^2 + 2) \).) Use this to determine primes \(p \) that can be written as \(p = x^2 + 2y^2 \). Using the quadratic reciprocity, the answer depends on what \(p \) modulo 8 is, as Gauss in german say would.

Solution: Since \(R \cong \mathbb{Z}[x]/(x^2 + 2) \),

\[
R/(p) \cong \mathbb{Z}[x]/(p, x^2 + 2) \cong \mathbb{F}_p[x]/(x^2 + 2).
\]

Thus \((p) \) is maximal in \(R \) if and only if \((x^2 + 2) \) is maximal in \(\mathbb{F}_p[x] \). Since ideals in \(\mathbb{F}_p[x] \) are principal, ideals containing \((x^2 + 2) \) corresponds to divisors of \(x^2 + 2 \). Thus \((p) \) is maximal if and only if \(-2 \) is not a square modulo \(p \). (The quadratic reciprocity says that \(-2 \) is a square modulo an odd prime \(p \) if and only if \(p \equiv 1, 3 \pmod{8} \).)

Now, if \(x^2 + 2y^2 = p \) then \((x/y)^2 \equiv -2 \pmod{p} \), i.e. \(-2 \) is a square modulo \(p \). Conversely, if \(-2 \) is a square modulo \(p \), then there exists an ideal \(P \) such that \(R \supset P \supset (p) \). The norm of \(P \) is \(p \), since \(N(P) \) is a proper divisor of \(N(p) = p^2 \). Since \(P = (x + y\sqrt{-2}) \) by problem 3, \(p = N(P) = x^2 + 2y^2 \).