1) Use the Eiseinstein Criterion to prove that \(x^6 + x^3 + 1 \) is irreducible. (Hint: replace \(x \) by \(x + 1 \).)

2) Let \(\varphi : \mathbb{Z}[x] \to \mathbb{C} \) be the map defined by \(f(x) \mapsto f(1 + i) \). Let \(I \) be the kernel of \(\varphi \). Prove that \(I \) is principal, i.e. find a generator \(g(x) \) and prove that any element in \(I \) is a multiple of \(g(x) \). Hint: you will need to use Gauss’ Lemma for this.

3) Prove that the ring \(\mathbb{Z}[\sqrt{-2}] \) is euclidean with respect to the norm \(N(x + y\sqrt{-2}) = x^2 + 2y^2 \), i.e. for every \(\alpha, \beta \in \mathbb{Z}[\sqrt{-2}] \), with \(\beta \neq 0 \), show that there exists \(\gamma, \delta \in \mathbb{Z}[\sqrt{-2}] \), such that \(\alpha = \gamma \beta + \delta \), and \(N(\delta) < N(\beta) \). Do this for \(\alpha = 4 + 2\sqrt{-2} \) and \(\beta = 1 + \sqrt{-2} \).

4) Let \(R = \mathbb{Z}[\sqrt{-2}] \). Let \(p \) be a prime. When is the principal ideal \((p) \subseteq R \) maximal? (Hint: use \(R \cong \mathbb{Z}[x]/(x^2 + 2) \) to understand \(R/(p) \).) Use this to determine primes \(p \) that can be written as \(p = x^2 + 2y^2 \). Using the quadratic reciprocity, the answer depends on what \(p \) modulo 8 is, as Gauss in german say would.

5) Let \(R \) be a ring such that any ideal is finitely generated. Let \(I_1 \subseteq I_2 \subseteq I_2 \subseteq \ldots \) be an infinite sequence of ideals in \(R \). Prove that exists an integer \(n \) such that \(I_n = I_{n+1} = \ldots \).

6) Find the quotient \(\mathbb{Z}^3/N \) (in the normal form) where \(N \) is a submodule generated by the columns of the matrix
\[
\begin{pmatrix}
3 & 1 & 2 & 4 \\
1 & 1 & 1 & 1 \\
2 & 3 & 6 & 5
\end{pmatrix}
\]