1) Let \(I, J \) be ideals in a ring \(R \). Show that \(I + J = \{ r \in R \mid r = x + y, x \in I, y \in J \} \) is an ideal. If \((n), (m)\) are two principal ideals in \(\mathbb{Z} \), what is \((n) + (m)\)?

 Solution: The second part. Let \(d \) be the greatest common divisor of \(n \) and \(m \). Since \((n) + (m)\) is the set of all integers \(xn + ym \), and these elements are multiples of \(d \), we have \((n) + (m) \subseteq (d)\). Since \(xn + ym = d \) has a solution in \(x \) and \(y \), the equality \((n) + (m) = (d)\) holds.

2) Let \(\varphi : \mathbb{Z}[x] \to \mathbb{R} \) be the map defined by \(f(x) \mapsto f(1/2) \). Let \(I \) be the kernel of \(\varphi \). Prove that \(I \) is principal, i.e. find a generator \(g(x) \) and prove that any element in \(I \) is a multiple of \(g(x) \).

 Solution: Let \(g(x) = 2x - 1 \). Since \(g(x) \) is not monic, we cannot divide any \(f(x) \in \mathbb{Z}[x] \). Assume that \(f(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_0 \in I \). Since \(f(1/2) = 0 \), after multiplying by \(2^n \) we get
 \[
 a_n + a_{n-1}2 + \ldots + a_02^n = 0.
 \]
 It follows that \(a_n \) is even, so we can start dividing \(f(x) \) by \(2x - 1 \) in \(\mathbb{Z}[x] \):
 \[
 f(x) - \frac{a_n}{2}(2x - 1) = h(x)
 \]
 where the degree of \(h \) is smaller than the degree of \(f \). Substitute \(x = 1/2 \) in the above equation. The left hand side is clearly zero, hence \(h(1/2) = 0 \). If we already know that \(h(x) \) is a multiple of \(2x - 1 \) then the above equation implies that \(f(x) \) is also a multiple of \(2x - 1 \). Thus the proof follows by the induction on the degree of polynomials in \(I \). The induction base: if \(f(x) \in I \) has degree 0, then \(f(x) \) is 0, clearly a multiple of \(2x - 1 \).

3) What are the maximal ideals in \(\mathbb{R}[x]/(x^2 - 3x + 2) \)? In \(\mathbb{R}[x]/(x^2 + x + 1) \)?

 Solution: Maximal ideals in a quotient ring \(R/I \) correspond to maximal ideals in \(R \) containing \(I \). Apply this to \(R = \mathbb{R}[x] \). In this ring any ideal \(I \) is principal, \(I = (f(x)) \). Then \(J = (g(x)) \) contains \(I \) if and only if \(f(x) \) is a multiple of \(g(x) \). Furthermore, \(J \) is maximal if and only if \(g(x) \) is an irreducible polynomial. Since \(x^2 - 3x + 2 = (x - 1)(x - 2) \), the first ring has two maximal ideals generated by \(x - 1 \) and \(x - 2 \), respectively. On the other hand, \(x^2 + x + 1 \) is irreducible, so only the 0 ideal is maximal. (This ring is a field isomorphic to \(\mathbb{C} \).)

4) Is the ring \(\mathbb{Z}/10\mathbb{Z} \) isomorphic to \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \)? Is \(\mathbb{Z}/8\mathbb{Z} \) isomorphic to \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \)?

 Solution: The map \(x \mapsto (x, x) \) defines a homomorphism from \(\mathbb{Z} \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \). The kernel is \(\mathbb{Z}/10\mathbb{Z} \), yielding an isomorphism by the first isomorphism theorem. For the second part, writing a ring as a product is the same as finding non-trivial idempotents. But \(\mathbb{Z}/8\mathbb{Z} \) has no idempotents except 0 and 1, by a simple check.
5) Determine the ring $\mathbb{Z}[x]/(x^2 - 1, 2x + 1)$.

Solution: The idea is to divide $x^2 + 1$ by $2x + 1$. This can be done provided we take an appropriate multiple of $x^2 + 1$:

$$2(x^2 + 1) - x(2x + 1) = -x + 2$$

Thus $-x + 2$ is also in the ideal. Dividing once again, $2(-x + 2) + (2x + 1) = 5$ is also in the ideal. Hence

$$\mathbb{Z}[x]/(x^2 + 1, 2x + 1) = \mathbb{Z}[x]/(x^2 + 1, 2x + 1, 5) \cong \mathbb{F}_5[x]/(x^2 + 1, 2x + 1)$$

where the last isomorphism is the correspondence of ideals in $\mathbb{F}_5[x]$ and ideals in $\mathbb{Z}[x]$ containing (5). Since $2 \cdot 3 = 1$ in \mathbb{F}_5, we can replace $2x - 1$ by the monic $3(2x - 1) = x - 3$. Now, using the division, one checks that $x - 3$ divides of $x^2 + 1$. Hence

$$\mathbb{F}_5[x]/(x^2 + 1, 2x + 1) = \mathbb{F}_5[x]/(x^2 + 1, x - 3) = \mathbb{F}_5[x]/(x - 3) \cong \mathbb{F}_5$$

where the last isomorphism is given by evaluating polynomials at 3.