1) Let a and b be two elements in a group G. Assume that a has order 11 and $a^7b = ba^7$. Prove that $ab = ba$.

Solution: The reason why this works is that, since 7 is relatively prime to 11, the set of all powers of a^7 is the same as the set of all powers of a. (Check this.) Since a^7 commutes with b, any power of a^7 commutes with b. But $(a^7)^8 = a^{56} = (a^{11})^5 a = a$, thus a commutes with b.

2) Let G be an abelian group. Show that $H = \{x \in G \mid x^2 = e\}$ is a subgroup. Here e is the identity element in G.

Solution: We need to show that H is closed under multiplication and taking inverse. If x and y are in H, then $x^2 = e$ and $y^2 = e$. Multiplying this two equations gives $x^2y^2 = e \cdot e = e$. Since G is abelian, $x^2y^2 = xyxy = (xy)^2$, thus $(xy)^2 = e$, and this means that xy is in H, i.e. H is closed under multiplication. The set H is closed under taking inverse since $x^2 = e$ implies that x is its own inverse.

Alternatively, $\varphi(x) = x^2$ is a homomorphism, by the following problem, and H is the kernel of φ. Hence it is a subgroup.

3) Let G be a group and $\varphi : G \to G$ the map defined by $\varphi(x) = x^2$. Show that φ is a homomorphism if and only if G is an abelian group.

Solution: Note that $\varphi(x)\varphi(y) = x^2y^2 = xxyy$, and $\varphi(xy) = (xy)^2 = xyxy$. Thus $\varphi(xy) = \varphi(x)\varphi(y)$ for all x and y, i.e. φ is a homomorphism, if and only if $xyxy = xxyy$, but this is equivalent to $yx = xy$ (cancel one x and one y) for all x and y i.e. G is commutative.

4) Let G be a group and \sim be the relation such that $x \sim y$ if there exists g in G such that $x = gyy^{-1}$. Prove that \sim is an equivalence relation.

Solution:

Reflexivity. We need to show that $x \sim x$ for all $x \in G$, i.e. for every x we need to find g such that $x = gxx^{-1}$. Obviously, we can pick $g = e$, the identity.

Symmetry. If $x \sim y$ i.e. $x = gyy^{-1}$ for some g in G then $y = g^{-1}yg$ i.e. $y \sim x$.

Transitivity. If $x \sim y$ and $y \sim z$ i.e. $x = gyy^{-1}$ for some g in G and $y = hzh^{-1}$ for some h in G then, by substituting $y = hzh^{-1}$ into the first equation and using that $h^{-1}g^{-1} = (gh)^{-1}$, we get $x = (gh)z(gh)^{-1}$ i.e. $x \sim z$.

1
5) Compute the center of the group of matrices (with real entries) of the following form:

\[
\begin{pmatrix}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{pmatrix}.
\]

Hint: compute first the centralizers in two special cases when either \(x\) or \(y\) is 1 and other two variables are 0.

Solution: Note first that

\[
\begin{pmatrix}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{pmatrix}
\]

holds only if \(x = 0\). Similarly,

\[
\begin{pmatrix}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} =
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{pmatrix}
\]

holds only if \(y = 0\). Finally, one easily checks that each matrix with \(x = 0\) and \(y = 0\) is in the center. Thus

\[
Z = \left\{ \begin{pmatrix}
1 & 0 & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} : z \in \mathbb{R} \right\}.
\]