1. Chapter 1

1.1.3. If \(a \mid b \) and \(b \mid c \) show that \(a \mid c \).

Solution: \(a \mid b \) means that \(b = na \) and \(b \mid c \) that \(c = mb \). Substituting \(b = na \) gives \(c = (mn)a \), that is, \(a \mid c \).

1.2.1. Find an integer solution of \(305x + 145y = \gcd(305,145) \).

Solution:

\[
egin{align*}
305 &= 2 \cdot 145 + 15 \\
145 &= 10 \cdot 15 - 5 \\
15 &= 3 \cdot 5 + 0
\end{align*}
\]

Hence \(5 = \gcd(305,145) \) and substituting \(15 = 305 - 2 \cdot 145 \) into the second equation gives

\[
5 = 10 \cdot 305 - 21 \cdot 145.
\]

When dividing 145 by 15 we have used a smaller reminder \(-5\) then the customary 10, to accelerate the process.

1.2.5. Let \(a \) and \(b \) be two integers. Show that any common divisor of \(a \) and \(b \) divides the greatest common divisor of \(a \) and \(b \).

Solution: Let \(d \) be the greatest common divisor. Then \(d = ax + by \) for some integers \(x \) and \(y \). Let \(c \) be a common divisor of \(a \) and \(b \). Then \(a = cm \) and \(b = cn \) for some integers \(n \) and \(m \). Substituting gives \(d = cmx + cny = c(mx + ny) \) i.e. \(c \) is a divisor of \(d \).

2. Chapter 2

2.1.1. Let \(G \) be a group and \(e \) and \(e' \) two identity elements. Show that \(e = e' \). Hint: consider \(e \circ e' \).

Solution: \(e \circ e' = e' \), since \(e \) is an identity element. \(e \circ e' = e' \) since \(e' \) is an identity element. Hence \(e = e' \).

2.1.3. Let \(G \) be a group. Assume that \(a = a^{-1} \) for every \(a \) in \(G \). Show that \(G \) is commutative, i.e. \(ab = ba \) for all \(a \) and \(b \) in \(G \).

Solution: \(ab = (ab)^{-1} = b^{-1}a^{-1} = ba \).

2.2.1. Prove that an integer is divisible by 11 if and only if the sum of its digits is divisible by 11.
Solution: Since $10 \equiv -1 \pmod{11}$, $10^k \equiv (-1)^k \pmod{9}$ for all integers $k \geq 0$. If a_m, \ldots, a_0 are decimal digits of an integer n, then

$$n = a_m10^m + \cdots + a_210^2 + a_110 + a_0 \equiv (-1)^m a_m + \cdots + a_2 - a_1 + a_0 \pmod{11}.$$

2.4.1. Let G be a group and g an element in G of order n. Let m be a positive integer such that $g^m = e$. Show that n divides m.

Solution: Write $m = nq + r$ where $0 \leq r < n$. We want to show that $r = 0$. In addition to $g^m = e$, we also have $g^n = e$ since the order of g is n. Then we have the following identities.

$$e = g^m = g^{nq + r} = (g^n)^e \cdot g^r = g^r.$$

Hence $g^r = e$ and this is possible only if $r = 0$.

2.4.5. Let G be a group and g an element in G of order 9. What is the order of g^3? What is the order of g^2? Justify your answers.

Solution: Since the order of g is 9, $g^9, g^{18}, g^{27}, g^{36}, \ldots$ are all powers of g equal to the identity element in G. Thus the order of g^k is the smallest integer m such that km is a multiple of 9. If $k = 3$ then $m = 3$, if $k = 2$ then $m = 9$.

2.4.7 Let g be a group element such that $g^9 = e$ and $g^{16} = e$ where e is the identity element. Show that $g = e$.

Solution: Since 9 and 16 are relatively prime there exist integers x and y such that $1 = 9x + 16y$. Then

$$g = g^1 = g^{9x + 16y} = g^{9x} \cdot g^{16y} = (g^9)^x \cdot (g^{16})^y = e \cdot e = e.$$

In a pedestrian way, $g^{16} = e$ and $g^9 = e$ imply that $g^7 = e$, then $g^9 = e$ and $g^7 = e$ imply that $g^2 = e$ etc.

2.5.3 Solve the system of congruences

$$x \equiv 4 \pmod{55}$$
$$x \equiv 11 \pmod{69}$$

Solution: The first equation implies $x = 4 + k \cdot 55$. Substituting into the second equation gives $k \cdot 55 = 7 \pmod{69}$. The inverse of 55 modulo 69 is -5. Thus $k = -35$.

2.5.5. Solve the system of congruences

$$x \equiv 11 \pmod{16}$$
$$x \equiv 16 \pmod{27}$$

Solution: The second equation implies $x = 16 + k \cdot 27$. Substituting into the first equation gives $k \cdot 11 = 11 \pmod{16}$, since $16 \equiv 0 \pmod{16}$ and $27 \equiv 11 \pmod{16}$, hence $k = 1$. Thus $x = 43$.

2.5.6. Find the last two digits of 3^{125}.
Solution: The question is: What is $3^{101} \mod 100$? Since 3 is relatively prime to 100, we can use Euler’s theorem modulo 100. Since $\varphi(100) = \varphi(4) \varphi(25) = 2 \cdot 20 = 40$, it follows that $3^{40} \equiv 1 \mod 100$ and

$$3^{125} = 3^{3 \cdot 40 + 5} \equiv 3^5 = 43 \mod 100.$$

2.5.9. Compute $3^{25} \mod 45$. Hint: compute $3^{25} \mod 9$ and 5, then use CRT.

Solution: It is clear that $3^{45} \equiv 0 \mod 9$. Since $\varphi(5) = 4$, and 3 is prime to 5,

$$3^{25} \equiv 3 \mod 5.$$

Hence, we are looking for x such that $3 + 5x \equiv 0 \mod 9$. The multiplicative inverse of 5 modulo 9 is 2, hence

$$x \equiv 2 \cdot (-3) \equiv 3 \mod 9.$$

The answer is $3 + 5 \cdot 3 = 18$.

3. Chapter 3

3.1.5. Let R be a ring and let -1 denote the inverse of 1 for addition. Show that, for every $r \in R$, $(-1) \cdot r = -r$, where $-r$ is the inverse of r for addition. Hint: use $r \cdot 0 = 0$.

Solution: Multiply $(1 + (-1)) = 0$ by r, use $r \cdot 0 = 0$ on the right, and the distributive property on the left to conclude that $r + (-1) \cdot r = 0$. Uniqueness of the additive inverse implies that $(-1) \cdot r$ is the additive inverse of r.

3.3.1. Find the inverse of $2 + 5i$ modulo 31. Is there an inverse of $2 + 5i$ modulo 29?

Solution: We are looking for $x + yi$ such that $(2 + 5i)(x + yi) = 1$. This leads to a pair of linear equations $2x - 5y = 1$ and $5x + 2y = 0$. Modulo 31 there is a unique solution, $x = 2/29$ and $y = -5/29$. The inverse of 29 modulo 31 is 15, so $30 + 18i$ is the inverse modulo 31. Modulo 29 the system has no solution: the determinant of the system is 29 $\equiv 0 \mod 29$, so the two lines are parallel, but they do not coincide, since $(0, 0)$ is a solution to only one of the two equations. Alternatively, observe that $(2 + 5i)/(2 - 5i) \equiv 0 \mod 29$, so $2 + 5i$ is a zero divisor, and thus it cannot be invertible.

4. Chapter 4

4.1.1. Let $S = \{p_1, \ldots, p_n\}$ be any list of odd primes. Let $m = 3p_1 \cdots p_n + 2$. Show that m is divisible by an odd prime $q \equiv 2 \mod 3$ not in the set S. Conclude that there are infinitely many primes congruent to 2 modulo 3.

Solution: Let $m = q_1 \cdot q_2 \cdots q_s$ be a factorization into primes. Since m is odd and not divisible by 3 none of the primes factors is 2 or 3. If $q_1 \equiv 1 \mod 3$ for all i then $m \equiv 1 \mod 3$. But $m \equiv 2 \mod 3$, thus $q_i \equiv 2 \mod 3$ for at least one prime q_i.

5. Chapter 5

5.1.1 a) Solve $x^5 \equiv 2 \mod 35$.

Solution. The solution is $x \equiv 2^u \mod 35$ where u is the inverse of 5 modulo 24 = $\varphi(35)$. Since $5 \cdot 5 \equiv 1 \mod 24$ the inverse of 5 if 5. Hence $x = 2^5 = 32$.

5.1.1 d) Solve the congruence

\[x^5 \equiv 3 \pmod{64}. \]

Solution: This is solved by taking both sides to the power \(a \), where \(a \) is the inverse of 5 modulo \(\varphi(64) = 32 \). Then the right side is \(x \) and the left hand side of the congruence is the solution \(3^a \). The inverse of 5 is 13. It remains to compute \(3^{13} \), and this is done by consecutive squaring: \(3^4 \equiv 17 \pmod{64} \), \(3^8 \equiv 33 \pmod{64} \). Hence

\[3^{13} = 3^8 \cdot 3^4 \cdot 3 \equiv 33 \cdot 17 \cdot 3 \equiv 19 \pmod{64}. \]

5.2.1. Let \(n = p^m \), where \(p \) is prime. Verify, by computing all terms in the sum, that

\[\sum_{d|n} \varphi(d) = n. \]

Solution: The divisors of \(p^m \) are \(p^i \) where \(i = 0, 1, \ldots, m \). Since \(\varphi(1) = 1 \), and \(\varphi(p^i) = p^i - p^{i-1} \) for \(i > 0 \)

\[\sum_{d|n} \varphi(d) = \sum_{i=1}^{m} \varphi(p^i) = 1 + (p - 1) + (p^2 - p) + \ldots + (p^m - p^{m-1}) = p^m = n. \]

5.3.1. Let \(F \) be a field, and \(n \) a positive integer. If \(z \) is an \(n \)-th root of 1, then \(z^{-1} \) is also an \(n \)-th root of 1. If \(x \) and \(y \) are two \(n \)-th roots of 1, then \(xy \) is an \(n \)-th root of 1.

Solution: We have \(z^n = 1 \), by the definition of \(n \)-th roots of 1. Hence the inverse of \(z \) is \(z^{n-1} \), and \((z^{n-1})^n = (z^n)^{n-1} = 1 \) i.e. the inverse is also an \(n \)-th root of 1. We have \(x^n = 1 \) and \(y^n = 1 \). Multiplying this equations gives \(x^n y^n = 1 \). Since the multiplication in a field is commutative, \(x^n y^n = (xy)^n \), thus \((xy)^n = 1 \), i.e. \(xy \) is an \(n \)-th root of 1.

5.3.3. Compute all powers of 2 modulo 13, and enter them in the table. Which numbers modulo 13 have order 12?

Solution.

| \(|I\) | \(01\) | \(02\) | \(03\) | \(04\) | \(05\) | \(06\) | \(07\) | \(08\) | \(09\) | \(10\) | \(11\) | \(12\) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| \(2^I\) | 2 | 4 | 8 | 3 | 6 | 12 | 11 | 9 | 5 | 10 | 7 | 1 |

The table shows that the order of 2 is 12. Since \(2^I \) has order 12 if and only if \(I \) is prime to 12, it follows that \(2, 2^5 = 6, 2^7 = 11, 2^{11} = 7 \) have order 12.

5.3.4. Calculate orders of all non-zero elements modulo 13.

Solution:

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>\text{ord}(x)</td>
<td>)</td>
<td>1</td>
<td>12</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>12</td>
<td>12</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

5.4.1. Use the discrete logarithm modulo 11 with base 2 to solve the congruence \(7x \equiv 6 \pmod{11} \).

| \(|I\) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|---|
| \(2^I\) | 2 | 4 | 8 | 5 | 10 | 9 | 7 | 3 | 6 | 1 |
Solution: Using notation \(I(x) \) for the discrete logarithm, the equation \(7x \equiv 6 \pmod{11} \) implies \(I(7) + I(x) \equiv I(6) \pmod{10} \). Using \(I(7) = 7 \) and \(I(6) = 9 \) from the above table, it follows that \(I(x) = 9 - 7 = 2 \). Hence \(x = 4 \).

6. Chapter 6

6.1.2 b) Use Euler’s criterion to determine if 2 is a square modulo 43. Compute the necessary power of 2 using the method of consecutive squares.

Solution: We need to compute \(2^{(43-1)/2} = 2^{21} \) modulo 43. Consecutive squaring of 2 modulo 43 gives
\[
2^4 = 16, \quad 2^8 = 16^2 = -2, \quad 2^{16} = (-2)^2 = 4.
\]
Since \(21 = 16 + 4 + 1 \), \(2^{21} = 2^{16} \cdot 2^4 \cdot 2 \equiv 4 \cdot 16 \cdot 2 = 128 \equiv -1 \pmod{43} \). Hence 2 is not a square modulo 43.

6.4.1. Use the primitive root 2 modulo 37 to find a primitive cubic root modulo 37, and a square root of \(-3\) modulo 37.

Solution: 2 has order 36, hence \(2^{12} \equiv -11 \pmod{37} \) and its square \(2^{24} \equiv 10 \pmod{37} \) are of order 3, i.e. primitive cube roots of 1. Their difference \(-21 \equiv 16 \pmod{37} \) is a square root of \(-3\).

6.4.6 State the quadratic reciprocity law. Then calculate \(\left(\frac{122}{127}\right) \).

Solution: Note that \(122 = 2 \cdot 61 \), \(127 \equiv 7 \pmod{8} \) and \(61 \equiv 5 \pmod{8} \). In particular 2 is a square modulo 127.
\[
\left(\frac{122}{127}\right) = \left(\frac{2}{127}\right) \cdot \left(\frac{61}{127}\right) = \left(\frac{61}{127}\right) = \left(\frac{127}{61}\right) = \left(\frac{5}{61}\right) = \left(\frac{61}{5}\right) = \left(\frac{1}{5}\right) = 1
\]

6.4.7. Does the quadratic equation \(x^2 + 4x + 11 = 0 \) have a solution modulo 43?

Solution: By completing to a square, roots of the quadratic equation are \(-2 \pm \sqrt{-7}\). By quadratic reciprocity,
\[
\left(\frac{-7}{43}\right) = \left(\frac{43}{7}\right) = \left(\frac{1}{7}\right) = 1.
\]
Hence, \(-7\) is a square modulo 43, so we have solutions modulo 43. Alternatively, notice that \(-7 \equiv 36 \pmod{43}\) so \(\sqrt{-7} = \pm 6\).

6.4.12. Let \(n \) be a positive integer. Let \(p \) be a prime divisor of \(n^2 + 3 \). Use the quadratic reciprocity to conclude that \(p \equiv 1 \pmod{3} \). Hint: \(n^2 \equiv -3 \pmod{p} \).

Solution: \(p \) dividing \(n^2 + 3 \) implies that \(-3\) is a square modulo \(p \). By the quadratic reciprocity, this happens if and only if \(p \equiv 1 \pmod{3} \).

6.4.13. Use the previous exercise to prove that there are infinitely many primes congruent to 1 modulo 3.
Solution: Let $S = \{p_1, \ldots, p_m\}$ be any set of primes congruent to 1 modulo 3. Let $n = p_1 \cdots p_m$. Then any p dividing $n^2 + 3$ is clearly different from p_1, \ldots, p_m.

7. Chapter 7

7.1.5. Can Pepin’s test be done with 3 replaced by 7?

Solution: Yes if 7 is not a square modulo any Fermat’s prime. Thus we need to show that

$$\left(\frac{7}{F_n}\right) = -1,$$

for any Fermat prime F_n. Since $F_n \equiv 1 \pmod{4}$, it follows that

$$\left(\frac{7}{F_n}\right) = \left(\frac{F_n}{7}\right).$$

It remains to determine F_n modulo 7. Note that consecutive squaring of 2 modulo 7 alternates between 2 and 4. Hence F_n, modulo 7, is 3 or 5. Neither of the two numbers is a square modulo 7, hence Pepin’s test works with 7.

8. Chapter 8

8.1.2. Use the descent procedure procedure to find a solution of the equation $x^2 + y^2 = 61$ starting with $11^2 + 1^2 = 2 \cdot 61$.

Solution: Here $m = 2$. $11 \equiv 1 \pmod{2}$ and $1 \equiv 1 \pmod{2}$.

$$\frac{1}{2}(11 + i)(1 - i) = 6 - 5i$$

giving $6^2 + 5^2 = 61$.

9. Chapter 9

9.1.4. Prove by induction the closed formula for the sum of the first n powers of 2. (The first is $2^0 = 1$):

$$1 + 2 + \cdots + 2^{n-1} = 2^n - 1.$$

Solution: If $n = 1$ then $1 = 2^1 - 1$, so the formula is true for $n = 1$. Assume the formula true for n. Adding 2^n to both sides yields

$$1 + 2 + \cdots + 2^{n-1} + 2^n = 2^n - 1 + 2^n.$$

Since $2^n + 2^n = 2^n(1 + 1) = 2^n \cdot 2 = 2^{n+1}$, the formula is true for $n + 1$.

9.2.4. Show that, if (u, v) is a solution of $x^2 - 3y^2 = -2$ then

$$\begin{cases} u_1 = 2u + 3v \\ v_1 = u + 2v \end{cases}$$

is another solution of $x^2 - 3y^2 = -2$.
Solution:

\[(2u + 3v)^2 - 3(u + 2v)^2 = 4u^2 + 12uv + 9v^2 - 3(u^2 + 4uv + 4v^2) = u^2 - 3v^2 = -2.\]

NB: Solutions of the Pell equation \(x^2 - 3y^2 = 1\) “act” on the solutions of \(x^2 - 3y^2 = -2\). The first solution of \(x^2 - 3y^2 = 1\) is \(2 + \sqrt{3}\), and if \(u + v\sqrt{3}\) is a solution of \(x^2 - 3y^2 = -2\), then

\[(2 + \sqrt{3})(u + v\sqrt{3}) = (2u + 3v) + (u + 2v)\sqrt{3}\]

is another solution of \(x^2 - 3y^2 = -2\).

9.2.5. Recall that numbers \(P_n = \frac{3n^2 - n}{2}\) are pentagonal, while \(T_m = \frac{m(m+1)}{2}\) are triangular. The equation \(P_n = T_m\), after substituting \(n = (x + 1)/6\) and \(m = (y - 1)/2\), becomes the equation \(x^2 - 3y^2 = -2\). Use the previous problem to generate solutions of this equation to find three pentagonal-triangular numbers. \((P_1 = T_1 = 1\) is one.)

Solution: The first pentagonal-triangular number \(P_1 = T_1 = 1\) corresponds to the solution \((5, 3)\) of \(x^2 - 3y^3 = -2\). The previous exercise generates the following solutions of \(x^2 - 3y^2 = -2\):

\[(19, 11), (71, 41), (265, 153), (989, 571)\ldots\]

Only every other of these solutions can be converted into integral \((n, m)\): \((71, 41)\) into \((12, 20)\) and \((989, 571)\) into \((165, 285)\). It follows that

\[P_{12} = T_{20} = 210\] and \[P_{165} = T_{285} = 40755\]

are two additional pentagonal-triangular numbers.