Polynomials

Putnam Notes, Fall 2006 University of Utah
We recall some basic definitions and properties.

Fundamental Theorem of Algebra. Every nonzero polynomial of degree
n with complex coefficients has precisely n complex roots ai,as, ..., a, and
can be factored as

p(z) =clzr —ar)(x —az) - (x — ay).

For example, the complex roots of ™ —1 = 0 (n-th roots of 1) form a regular
n-gon in complex plane, and can be written as

- 27k 27k
2™k — cos(Z—) + isin(—), k=1,...,n.
n n
Polynomial Interpolation. For any sequence ai,as,...,a, of n complex
numbers and n distinct points x1, x2, ..., 2, in C there exists a unique poly-

nomial of degree at most n — 1 such that

p(x]):aja jzo,l,...,n.

This polynomial is easily constructed using Lagrange’s interpolation:

o) — = a'Hi;éj(x_xi)
P = g G =

Division Algorithm. If f and g # 0 are two polynomials with coefficients
in a field F', then there exist unique polynomials ¢ and r such that

f=qg+r

here either 7 = 0 or deg(r) < deg(g). The situation with polynomials with
coefficients in a ring is more delicate. However, if f and ¢ have integer
coefficients, and g is monic (the first non-zero coefficient is 1), then ¢ and r
also have integer coefficients.

One can use the division algorithm to show that F[z] is a unique fac-
torization domain. That is, every polynomial p(z) can be factored into
irreducible polynomials p(z) = qi1(z) - ... - gm(x) where ¢;(x) are uniquely



determined up to a permutation and multiplication of each ¢;(x) by a non-
zero scalar ¢; such that ¢; - ... ¢, = 1. Once we know that F[z] is a

unique factorization domain, it can be shown that F[zy,...

polynomials in n variables is also a unique factorization domain.

Invariant Polynomials. Here we discuss polynomials in n variables x1, . ..

, Tp], the ring of

s -

A polynomial p is said to be invariant if it does not change under any per-
., Ty is a poly-
nomial in elementary symmetric polynomials c1, ¢, . . ., ¢, which are defined

mutation of n variables. Every invariant polynomial in 1, ..

by

(€ —z1)(w —a2) - (x —ap) = 2" + cra” + 22" 4

+ cp.-

For example, if n = 3 then there are three elementary symmetric functions

and they are

c1 = —(xl + 22 + xg)

Co = T1T2 + T1T3 + X2x3

C3 = —T1T2X3.

The polynomial Sy = x? + 23 + 23 is symmetric and in terms of ¢;’s it can

be written as

SQ = C% — 262.

This formula is a special case of Newton’s formulas for power sums.

More precisely, let m be a positive integer. The m-th power sum in zq, . ..

1S

Sm =" + 3" + - 4y

Then

Si+a =
Sy + 151 + 2¢9

S3+ 159 + 251 +3c3 =

Sn+c1Sp—1+ -

+cpo151 +ne, =

Sm + CISm—l +--- 4 CnSm—n =

0
0

y T

where the last equality holds for m > n. Notice that the formulas imply not
only that Sy can be expressed in terms of ¢, but, conversely, that ¢ can be
expressed in terms of Sy for k < n. In particular, it follows that any sym-

metric polynomial in variables x, ..

in Sy for k < n, as well.

., Tn can be expresses as a polynomial



Palindromic polynomials. The equation a,2" + ap_12" '+ + a1z +
ap = 0 is called palindromic if a; = a,—; for all j. If n is even, then
by substitution z := x + 1/z reduces to an equation of degree n/2. After
finding solutions zj, j = 1,... 2,9, the solutions of the original equation are
found by solving = + % = z; for all j.

The following is an important observation. If a is a real number then
solutions of

r+—=a
x
are real if |a| > 2 and complex numbers on the unit circle (|z| = 1) if |a| < 2.

Cubic equation. The equation 23 + px + ¢ = 0 has three solutions which
are described as follows: Put

R =(q/2)" + (p/3)°

A:W—%+¢R B:3_%_¢E

Then the three solutions are

and

{A+ B,Ap + Bp%, Ap* + Bp}

where p = €2™/3 is a cubic root of 1. The number R is essentially the

discriminant of the cubic. More precisely,
108R = —(:L’l - $2)2(:132 - $3)2(:L'1 — $3)2

where x1, 22 and x3 are three roots of the cubic polynomial. Assume that
p and ¢ are real. If all three roots are real then R < 0. If one root is real
and the other two are complex conjugates of each other, then R > 0. Thus
calculating the discriminant is a quick way to see whether a cubic has one
or three real roots.



Exercises:

. Find the reminder when 28! 4+ 4% + 225 + 2% + x is divided by a) 23—z,
b)z?+1,¢) 2?2+ 2+ 1.

. Let p be a non-constant polynomial with integral coefficients. If p(k) =
0 for four distinct integers k, prove that p(k) is composite for every
integer k.

. Factor (@ +b+c¢)3 — (a® + b3 + ¢2).

. Find a if @ and b are integers such that 2> — x — 1 is a factor of
azx'” + bz 4+ 1.

. Find the unique polynomial of degree n such that
p(j) =2
for j=0,1,...,n.

. Find the unique polynomial p(z) of degree n such that

for j=0,1,...,n.

. A polynomial p,, of degree n satisfies p, (k) = Fj for k = n+2,n +
3,...,2n+2, where F}, are Fibonacci numbers. Show that p,(2n+3) =
Fopys — 1.

I

r + y + =z 1
22+ P+ 22 = 2
o+ oy P 3

find x4 + y* + 2%

. Complex solutions of z — 1 =0 are (¥, k =1,...n where ¢ = 27/™,
Show that . - '

Z Cdk _ {n if d is a multiple of n

P 0 otherwise
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Find a cubic equation whose roots are cubes of the roots of z3 + ax? +
bx +c=0.

Let @1, 22, ...,7, be the roots of a polynomial P(x) = 2" + az" ! +
bz 2 4 ca™ 3 + - - of degree n. The number

[T —=))
i#]
is called the discriminant of P. It is symmetric in variables z;, so it

can be expressed as a polynomial in the coefficients of P. Do this for
n=2and n = 3. If n = 3, assume that the polynomial is 23 + pz + q.

Find all values of the parameter a such that all roots of the equation
25 +32° + (6 —a)zt + (T—2a)23 + (6 —a)z? +324+1=0
are real.
The roots of the fifth degree equation
a® — 5r* — 352% + ...
form an arithmetic sequence. Find the roots.

Let G, = z"sinnA 4 y"sinnB + 2" sinnC where z,y, 2, A, B,C are
real numbers such that A + B + C is a multiple of w. Show that if
G1 = G9 =0 then G,, = 0 for all positive n.

If
r + y + z = 3
22 4+ 2 4+ 22 = 25
ot + oyt 4+ 2t = 209

find xlOO + y100 + ZIOO.

(B1 2005) Find a non-zero polynomial P(z,y) such that P([a], [2a]) =
0 for all real numbers for all real numbers a. (Note: [a] is the greatest
integer less then or equal to a.)

(A3 2001) Find values for the integer m such that
Py = ' — (2m + 4)2% + (m — 2)?

is a product of two non-constant polynomials with integer coefficients?



Hints and solutions

1. (part ¢)). The roots of #2 +z + 1 are p and p = p?, two cubic roots of
1:

_ 1, v=3
P=797
Thus
Sl B ¥ vr=q@)@?+2+1)=ax+b
gives

1+p+p+l=ap+bd
which implies that a = 2 and b = 2.

2. Hint: Let a, b, ¢, d be the four integral roots. Then
p(z) = (x —a)(z —b)(z — c)(z — d)q(z)

where ¢(z) has integral coefficients. If z is an integer, then (z —a)(x —
b)(x — ¢)(x — d) is composite.

3. Hint: Use formulas for a difference and a sum of two cubes. Then
(a+b+e)P—ad=0b+c)(--)and B>+ = b+c)(--).

It follows that (b+ c¢) divides our polynomial. By symmetry, a + ¢ and
a + b also divide our polynomial, as well. Thus

(a+b+c)p —(a®+03+c) =k(a+b)(a+c)(b+c)
for a constant k. Now put a = b = ¢ =1 to find that & = 1.

4. Solution: The solutions of 22 —z — 1 = 0 are

1++5 1-+/5
5

and a =
2

o =

Thus az'” + b2'6 + 1 = g(z)(2? — z — 1) gives

aa'” +bat® +1=0
ad'"+balf+1=0



which is a 2 x 2 system with a and b as unknowns. Since aa = —1,
the determinant of this system is equal to o — @ = /5. Thus, using
the Cramer’s rule, the solution is

(14 V5)" (1= V)"
216\/5

which we recognize as the 16-th Fibonacci number.

. Hint: Use the Lagrange’s interpolation.
. Hint: Consider ¢(x) = (14 x)p(x) — 1. Then
q(z) =cx(x —1)...(x —j)
Now pick ¢ so that g(x) + 1 is divisible by 1 + x.
. Hint: Notice that for k=n+1,n4+2,...,2n
Pk +2) —pu(k +1) = Fry2 — Fp1 = Fj,
80 Prn—1(x) = pn(x + 2) — pu(x 4+ 1). Use this to do induction.

1) Base of induction: Let n = 1. Since p1(3) = 2 and p;(4) = 3 then
pi(x) = x + 1. Thus
p1(5) =4=F5— 1.

2) Step of induction: Assume that p,_1 satisfies p,—1(2n+1) = Fo, 11—

1. Thus

Pn(2n43) = pp(2n+2)+pp—12n+1) = Fopqo+Fopy1—1 = Fopi3—1.

. Elementary exercise in symmetric polynomials.

. You are asked to compute the power sums for the roots of the poly-
nomial £ — 1 = 0. Note that all ¢; = 0 except ¢, = 1.

. Hint: the coefficients of the desired cubic are also symmetric functions
in roots of the original cubic.

. If n = 2, write the polynomial in a more familiar 22 4+ px + ¢ = 0.
(1 —z2) (w3 — x1) = 22120 — (2% 4+ 23) = da1 29 — (71 4 72)? = 4q — p°.

Note that this expression appears in the quadratic formula! If n = 3,
it takes a bit more to do the problem.
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Hint: The polynomial is palindromic so it can be reduced to the degree
3. Next, the solutions of

1
r+—=25b
x
are real iff |b] > 2.

Hint: The 5 roots are a, a+d, a+2d, a+3d and a+4d for two numbers
a and b. The first two symmetric polynomials are known. This gives

5a + 10d = 5 and 10a? + 40ad + 35d% = —35.

Solution: Put X = ze*t, Y = ye'f and Z = z¢’“. Then G,, is the
imaginary part of the n-th power sum

S, =X"+Y"+ 27",

Since G; = G5 = 0 the first two elementary symmetric polynomials in
X,Y, Z are real. Since

XYZ = xyzei(A+B+C) = +axyz,

(here we are using that A+ B+ C is a multiple of 7) the third elemen-
tary symmetric polynomial is also real. Since all S,, can be expressed
as polynomials with integer coefficients of the three elementary sym-
metric polynomials, they have to be real.

Hint: (I am not so sure, though.) Note that any symmetric polynomial
is a polynomial in S, Se and S3. By degree considerations, Sy must
be linear in S3, so we can certainly figure out S3, and therefore z, y
and z as solutions of a cubic?

Hint: This problem is very easy. What is the possible difference [2a] —
2[a]?

Hint: Find the roots.



