
Polynomials

Putnam Notes, Fall 2006 University of Utah

We recall some basic definitions and properties.

Fundamental Theorem of Algebra. Every nonzero polynomial of degree
n with complex coefficients has precisely n complex roots a1, a2, . . . , an and
can be factored as

p(x) = c(x− a1)(x− a2) · · · (x− an).

For example, the complex roots of xn−1 = 0 (n-th roots of 1) form a regular
n-gon in complex plane, and can be written as

e2πik/n = cos(
2πk

n
) + i sin(

2πk

n
), k = 1, . . . , n.

Polynomial Interpolation. For any sequence a1, a2, . . . , an of n complex
numbers and n distinct points x1, x2, . . . , xn in C there exists a unique poly-
nomial of degree at most n− 1 such that

p(xj) = aj , j = 0, 1, . . . , n.

This polynomial is easily constructed using Lagrange’s interpolation:

P (x) =
n∑

j=0

aj

∏
i6=j(x− xi)∏
i6=j(xj − xi)

.

Division Algorithm. If f and g 6= 0 are two polynomials with coefficients
in a field F , then there exist unique polynomials q and r such that

f = qg + r.

here either r = 0 or deg(r) < deg(g). The situation with polynomials with
coefficients in a ring is more delicate. However, if f and g have integer
coefficients, and g is monic (the first non-zero coefficient is 1), then q and r
also have integer coefficients.

One can use the division algorithm to show that F [x] is a unique fac-
torization domain. That is, every polynomial p(x) can be factored into
irreducible polynomials p(x) = q1(x) · . . . · qm(x) where qi(x) are uniquely
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determined up to a permutation and multiplication of each qi(x) by a non-
zero scalar ci such that c1 · . . . · cm = 1. Once we know that F [x] is a
unique factorization domain, it can be shown that F [x1, . . . , xn], the ring of
polynomials in n variables is also a unique factorization domain.

Invariant Polynomials. Here we discuss polynomials in n variables x1, . . . , xn.
A polynomial p is said to be invariant if it does not change under any per-
mutation of n variables. Every invariant polynomial in x1, . . . , xn is a poly-
nomial in elementary symmetric polynomials c1, c2, . . . , cn which are defined
by

(x− x1)(x− x2) · · · (x− xn) = xn + c1x
n + c2x

n−2 + . . . + cn.

For example, if n = 3 then there are three elementary symmetric functions
and they are 

c1 = −(x1 + x2 + x3)
c2 = x1x2 + x1x3 + x2x3

c3 = −x1x2x3.

The polynomial S2 = x2
1 + x2

2 + x2
3 is symmetric and in terms of ci’s it can

be written as
S2 = c2

1 − 2c2.

This formula is a special case of Newton’s formulas for power sums.
More precisely, let m be a positive integer. The m-th power sum in x1, . . . , xn

is
Sm = xm

1 + xm
2 + · · ·+ xm

n .

Then
S1 + c1 = 0

S2 + c1S1 + 2c2 = 0
S3 + c1S2 + c2S1 + 3c3 = 0

. . .
Sn + c1Sn−1 + · · ·+ cn−1S1 + ncn = 0

Sm + c1Sm−1 + · · ·+ cnSm−n = 0

where the last equality holds for m > n. Notice that the formulas imply not
only that Sk can be expressed in terms of ck but, conversely, that ck can be
expressed in terms of Sk for k ≤ n. In particular, it follows that any sym-
metric polynomial in variables x1, . . . , xn can be expresses as a polynomial
in Sk for k ≤ n, as well.
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Palindromic polynomials. The equation anxn + an−1x
n−1 + · · ·+ a1x +

a0 = 0 is called palindromic if aj = an−j for all j. If n is even, then
by substitution z := x + 1/x reduces to an equation of degree n/2. After
finding solutions zj , j = 1, . . . zn/2, the solutions of the original equation are
found by solving x + 1

x = zj for all j.
The following is an important observation. If a is a real number then

solutions of
x +

1
x

= a

are real if |a| ≥ 2 and complex numbers on the unit circle (|x| = 1) if |a| ≤ 2.

Cubic equation. The equation x3 + px + q = 0 has three solutions which
are described as follows: Put

R = (q/2)2 + (p/3)3

and

A = 3

√
−q

2
+
√

R, B = 3

√
−q

2
−
√

R

Then the three solutions are

{A + B,Aρ + Bρ2, Aρ2 + Bρ}

where ρ = e2πi/3 is a cubic root of 1. The number R is essentially the
discriminant of the cubic. More precisely,

108R = −(x1 − x2)2(x2 − x3)2(x1 − x3)2

where x1, x2 and x3 are three roots of the cubic polynomial. Assume that
p and q are real. If all three roots are real then R < 0. If one root is real
and the other two are complex conjugates of each other, then R > 0. Thus
calculating the discriminant is a quick way to see whether a cubic has one
or three real roots.
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Exercises:

1. Find the reminder when x81+x49+x25+x9+x is divided by a) x3−x,
b) x2 + 1, c) x2 + x + 1.

2. Let p be a non-constant polynomial with integral coefficients. If p(k) =
0 for four distinct integers k, prove that p(k) is composite for every
integer k.

3. Factor (a + b + c)3 − (a3 + b3 + c3).

4. Find a if a and b are integers such that x2 − x − 1 is a factor of
ax17 + bx16 + 1.

5. Find the unique polynomial of degree n such that

p(j) = 2j

for j = 0, 1, . . . , n.

6. Find the unique polynomial p(x) of degree n such that

p(j) =
1

1 + j

for j = 0, 1, . . . , n.

7. A polynomial pn of degree n satisfies pn(k) = Fk for k = n + 2, n +
3, . . . , 2n+2, where Fk are Fibonacci numbers. Show that pn(2n+3) =
F2n+3 − 1.

8. If
x + y + z = 1
x2 + y2 + z2 = 2
x3 + y3 + z3 = 3

find x4 + y4 + z4.

9. Complex solutions of xn − 1 = 0 are ζk, k = 1, . . . n where ζ = e2πi/n.
Show that

n∑
k=1

ζdk =

{
n if d is a multiple of n

0 otherwise
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10. Find a cubic equation whose roots are cubes of the roots of x3 +ax2 +
bx + c = 0.

11. Let x1, x2, . . . , xn be the roots of a polynomial P (x) = xn + axn−1 +
bxn−2 + cxn−3 + · · · of degree n. The number∏

i6=j

(xi − xj)

is called the discriminant of P . It is symmetric in variables xi, so it
can be expressed as a polynomial in the coefficients of P . Do this for
n = 2 and n = 3. If n = 3, assume that the polynomial is x3 + px + q.

12. Find all values of the parameter a such that all roots of the equation

x6 + 3x5 + (6− a)x4 + (7− 2a)x3 + (6− a)x2 + 3x + 1 = 0

are real.

13. The roots of the fifth degree equation

x5 − 5x4 − 35x3 + . . .

form an arithmetic sequence. Find the roots.

14. Let Gn = xn sinnA + yn sinnB + zn sinnC where x, y, z, A,B, C are
real numbers such that A + B + C is a multiple of π. Show that if
G1 = G2 = 0 then Gn = 0 for all positive n.

15. If
x + y + z = 3
x2 + y2 + z2 = 25
x4 + y4 + z4 = 209

find x100 + y100 + z100.

16. (B1 2005) Find a non-zero polynomial P (x, y) such that P ([a], [2a]) =
0 for all real numbers for all real numbers a. (Note: [a] is the greatest
integer less then or equal to a.)

17. (A3 2001) Find values for the integer m such that

Pm = x4 − (2m + 4)x2 + (m− 2)2

is a product of two non-constant polynomials with integer coefficients?
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Hints and solutions

1. (part c)). The roots of x2 + x + 1 are ρ and ρ̄ = ρ2, two cubic roots of
1:

ρ = −1
2

+
√
−3
2

Thus

x81 + x49 + x25 + x9 + x = q(x)(x2 + x + 1) = ax + b

gives
1 + ρ + ρ + 1 = aρ + b

which implies that a = 2 and b = 2.

2. Hint: Let a, b, c, d be the four integral roots. Then

p(x) = (x− a)(x− b)(x− c)(x− d)q(x)

where q(x) has integral coefficients. If x is an integer, then (x−a)(x−
b)(x− c)(x− d) is composite.

3. Hint: Use formulas for a difference and a sum of two cubes. Then

(a + b + c)3 − a3 = (b + c)(· · · ) and b3 + c3 = (b + c)(· · · ).

It follows that (b+ c) divides our polynomial. By symmetry, a+ c and
a + b also divide our polynomial, as well. Thus

(a + b + c)3 − (a3 + b3 + c3) = k(a + b)(a + c)(b + c)

for a constant k. Now put a = b = c = 1 to find that k = 1.

4. Solution: The solutions of x2 − x− 1 = 0 are

α =
1 +

√
5

2
and ᾱ =

1−
√

5
2

.

Thus ax17 + bx16 + 1 = q(x)(x2 − x− 1) gives

aα17 + bα16 + 1 = 0
aᾱ17 + bᾱ16 + 1 = 0
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which is a 2 × 2 system with a and b as unknowns. Since αᾱ = −1,
the determinant of this system is equal to α − ᾱ =

√
5. Thus, using

the Cramer’s rule, the solution is

a =
(1 +

√
5)16 − (1−

√
5)16

216
√

5

which we recognize as the 16-th Fibonacci number.

5. Hint: Use the Lagrange’s interpolation.

6. Hint: Consider q(x) = (1 + x)p(x)− 1. Then

q(x) = cx(x− 1) . . . (x− j)

Now pick c so that q(x) + 1 is divisible by 1 + x.

7. Hint: Notice that for k = n + 1, n + 2, . . . , 2n

pn(k + 2)− pn(k + 1) = Fk+2 − Fk+1 = Fk

so pn−1(x) = pn(x + 2)− pn(x + 1). Use this to do induction.

1) Base of induction: Let n = 1. Since p1(3) = 2 and p1(4) = 3 then
p1(x) = x + 1. Thus

p1(5) = 4 = F5 − 1.

2) Step of induction: Assume that pn−1 satisfies pn−1(2n+1) = F2n+1−
1. Thus

pn(2n+3) = pn(2n+2)+pn−1(2n+1) = F2n+2+F2n+1−1 = F2n+3−1.

8. Elementary exercise in symmetric polynomials.

9. You are asked to compute the power sums for the roots of the poly-
nomial xn − 1 = 0. Note that all ci = 0 except cn = 1.

10. Hint: the coefficients of the desired cubic are also symmetric functions
in roots of the original cubic.

11. If n = 2, write the polynomial in a more familiar x2 + px + q = 0.

(x1−x2)(x2−x1) = 2x1x2− (x2
1 +x2

2) = 4x1x2− (x1 +x2)2 = 4q− p2.

Note that this expression appears in the quadratic formula! If n = 3,
it takes a bit more to do the problem.
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12. Hint: The polynomial is palindromic so it can be reduced to the degree
3. Next, the solutions of

x +
1
x

= b

are real iff |b| ≥ 2.

13. Hint: The 5 roots are a, a+d, a+2d, a+3d and a+4d for two numbers
a and b. The first two symmetric polynomials are known. This gives

5a + 10d = 5 and 10a2 + 40ad + 35d2 = −35.

14. Solution: Put X = xeiA, Y = yeiB and Z = zeiC . Then Gn is the
imaginary part of the n-th power sum

Sn = Xn + Y n + Zn.

Since G1 = G2 = 0 the first two elementary symmetric polynomials in
X, Y, Z are real. Since

XY Z = xyzei(A+B+C) = ±xyz,

(here we are using that A+B +C is a multiple of π) the third elemen-
tary symmetric polynomial is also real. Since all Sn can be expressed
as polynomials with integer coefficients of the three elementary sym-
metric polynomials, they have to be real.

15. Hint: (I am not so sure, though.) Note that any symmetric polynomial
is a polynomial in S1, S2 and S3. By degree considerations, S4 must
be linear in S3, so we can certainly figure out S3, and therefore x, y
and z as solutions of a cubic?

16. Hint: This problem is very easy. What is the possible difference [2a]−
2[a]?

17. Hint: Find the roots.
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