1. R-modules

Let R be a commutative ring with 1. An R module is an abelian group M together with a “scalar” multiplication by R, satisfying the same axioms as a vector space. In particular, if R is a field, then M is a vector space over R. Let $S = (v_1, v_2, \ldots, v_m)$ be an ordered set of elements in M. We say that S generates M, if every element v in M can be written as a linear combination

$$v = r_1v_1 + \ldots + r_mv_m$$

for some r_1, \ldots, r_m in R. We say that S is independent if

$$0 = r_1v_1 + \ldots + r_mv_m$$

implies that $r_1 = \ldots = r_m = 0$. The set S is a basis, if it is both, generates M, and is linearly independent. Note that, in general, a module need not have a basis. For example, if $R = \mathbb{Z}$ and $M = \mathbb{Z}/2\mathbb{Z} = \{0, 1\}$, then (1) (and nothing else) generates M, yet $2 \cdot 1 = 0$. On the other hand, if M has a basis then $M \cong R^m$.

We can perform the following three operations on any set S of elements in M:

- Permute any two elements of S.
- Multiply an element in S by an element in R^\times.
- Add a multiple of an element to another element.

Note that these operations are reversible, and preserve independent and generating sets.

Assume now that M has a basis (v_1, \ldots, v_m) and N is a submodule generated by (w_1, \ldots, w_n). Then there exist elements a_{ij} in R such that for every i,

$$w_i = a_{i1}v_1 + \ldots + a_{mi}v_m.$$

In particular, a_{ij} form an $m \times n$-matrix A. Now note that the three operations on (w_1, \ldots, w_n) correspond to the standard column operations on the matrix A, while on (v_1, \ldots, v_m) they correspond to inverse row operations. More precisely, multiplying v_i by a scalar r corresponds to dividing the i-th row by r. Similarly, adding a multiple of v_i to v_j corresponds to subtracting the same multiple of the j-th row to the i-th row. (Hope this is OK). Assume now that the matrix A can be reduced, by row and column operations, to a matrix with zeroes except for the first k entries d_1, \ldots, d_k on the diagonal. This implies that $N \cong R^k$ and

$$M/N \cong R/(d_1) \oplus \ldots \oplus R/(d_k) \oplus R^{m-k}.$$

For example, if R is a field, the reduction can be accomplished (Gauss’ elimination procedure), and non-zero diagonal entries can be taken to be one. In fact, this shows that vector spaces are classified by its dimension. Diagonalization can be accomplished for \mathbb{Z} as well, and this is the topic of the next section.
2. \textit{Z-modules}

Here we show that A can be diagonalized, and moreover, diagonal terms satisfy

$$d_1|d_2|\ldots|d_k.$$

(to be completed ...)

2.1. \textbf{Example.} Let M be the Z-submodule of Z^2 spanned by the columns of the matrix

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}.$$

We illustrate M (black dots) as a submodule of Z^2 in the following picture:

We shall now perform row and column operations. First, add the first column to the second. We get the matrix

$$A_1 = \begin{pmatrix} 1 & 0 \\ 1 & 4 \end{pmatrix}.$$

This column operation corresponds to a change of basis in M, and the corresponding figure is:
Second, subtract the first row from the second, and get the matrix

\[A_2 = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}. \]

This row operation corresponds to a change of basis in \(\mathbb{Z}^2 \), and the corresponding figure is:

As a consequence, we obtain \(\mathbb{Z}^2/M \cong \mathbb{Z}/4\mathbb{Z} \). In particular, the index of \(M \) is 4, which, by no accident, is equal to the determinant of \(A_2 \). Since row and column operations only change a sign of the determinant, note that the information about the index can be obtained already from the matrix \(A \), which has determinant \(-4\).
3. Generators of $SL_n(\mathbb{Z})$

Let A be an $n \times n$-matrix. As is well known, the column operations correspond to multiplying A by certain elementary matrices. For example, if $n = 2$, then multiplying A from the right by

$$
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\text{ and }
\begin{pmatrix}
-1 & 0 \\
0 & 1
\end{pmatrix}
$$

corresponds, respectively, to

- Adding the first column of A to the second.
- Permuting the two columns of A.
- Changing signs in the first column of A.

Similarly, row operations correspond to multiplying A by the elementary matrices from the left. An inconvenience here is the last two matrices have determinant -1. In order to remedy this, we shall replace them by the following matrices of determinant 1:

$$
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
\text{ and }
\begin{pmatrix}
-1 & 0 \\
0 & -1
\end{pmatrix}.
$$

Multiplying A by these three matrices corresponds to so-called strict column operations:

- Adding the first column of A to the second.
- Permuting two columns of A, and changing the signs in one.
- Changing the signs in both columns of A.

Proposition 3.1. All strict row/column operations can be obtained by repeated application of the first kind of operations: adding a multiple of row/column to another row/column.

Proof. The proof follows from the following identities satisfied by elementary matrices:

$$
\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
1 & 0 \\
-1 & 1
\end{pmatrix} \begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix},
$$

and

$$
\begin{pmatrix}
-1 & 0 \\
0 & -1
\end{pmatrix} = \begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix} \begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}.
$$

Let x_{ij} with $i \neq j$ be the $n \times n$ matrix such that all entries are 0 except the entry at the position (i, j) which is 1. Let $e_{ij} = I + x_{ij}$.

Theorem 3.2. The group $SL_n(\mathbb{Z})$ is generated by elementary matrices e_{ij}, with $i \neq j$. We have $n^2 - n$ generators in all.

Proof. Let A be in $SL_n(\mathbb{Z})$. Then, using the strict row/column operations, the matrix A can be reduced to a diagonal matrix with integers d_1, \ldots, d_n on the diagonal such that $d_1|d_2| \ldots |d_n$ and d_2, \ldots, d_n positive. Indeed, note that the strict operations allow change of signs in two rows/columns at a time, so we can always arrange that all but one of the diagonal terms is positive. However, since $d_1 \cdot \ldots \cdot d_n = 1$, it follows that $d_1 = \ldots = d_n = 1$. In particular, A can be reduced to the identity matrix using the strict operations only. Since the matrices e_{ij} generate all strict operations, the theorem follows.