MATH 5210, HW II
 SOLUTIONS

1) A metric space X is separable if it contains a dense countable set S. Prove that any open set V in X is a union of balls centered at points in S and with rational radii. (Since the set of such balls is countable, it follows that any open set is a countable union of balls).
Solution: Let $x \in V$. Then there exists rational $\epsilon>0$ such that $B(x, \epsilon) \subset V$. Since S is dense, there exists $y \in S$ contained in $B(x, \epsilon / 2)$. Clearly x is contained in $B(y, \epsilon / 2)$ and this ball is contained in $B(x, \epsilon)$ by the triangle inequality. Hence $B(y, \epsilon / 2)$ is contained in V.
2) Let $X=[0,1]^{2}$. Choose the distance on X wisely, and use the previous exercise to prove that any open set in X is Lebesgue measurable.
Solution: Let S be the set of points $x=\left(x_{1}, x_{2}\right)$ in X with both coordinates rational. We let $d(x, y)=\sup \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right)$. Balls for this choice of distance are rectangles, hence elementary sets, hence measurable. By the previous exercise every open set is a countable union of such rectangles, hence it is measurable, since the set of measurable sets is a σ-algebra.
Remark: With this exercise completed, we at last know that the circle $x_{1}^{2}+x_{2}^{2}<1$, being an open set, has a well defined area.
3) Let $P=[0,1]^{2}$. If E and F are two elementary sets such that $E \cup F=P$ then $m(E \cap F)=$ $m(E)+m(F)-1$. Now assume $E=\cup_{i=1}^{\infty} E_{i}$ and $F=\cup_{j=1}^{\infty} F_{j}$, disjoint unions of elementary sets each, and $E \cup F=P$. Observe that $E \cap F$ is the disjoint union of $E_{i} \cap F_{j}$. Prove that

$$
\sum_{i, j} m\left(E_{i} \cap F_{j}\right)=\sum_{i} m\left(E_{i}\right)+\sum_{j} m\left(F_{j}\right)-1 .
$$

Solution: Fix n, and let $A_{n}=\cup_{i=1}^{n} E_{i}$ and $B_{n}=\cup_{j=1}^{n} F_{i}$. Since A_{n} and B_{n} are elementary sets,

$$
m\left(A_{n} \cap B_{n}\right)=m\left(A_{n}\right)+m\left(B_{n}\right)-m\left(A_{n} \cup B_{n}\right)
$$

Using this inequality, substituting $m\left(A_{n}\right)=\sum_{i=1}^{n} m\left(E_{i}\right)$ and $m\left(B_{n}\right)=\sum_{j=1}^{n} m\left(F_{j}\right)$, we arrive to

$$
\sum_{i, j \leq n} m\left(E_{i} \cap F_{j}\right)=\sum_{i=1}^{n} m\left(E_{i}\right)+\sum_{j=1}^{n} m\left(F_{j}\right)-m\left(A_{n} \cup B_{n}\right)
$$

valid for every n. Let $C_{n}=A_{n} \cup B_{n}$. Observe that C_{n} is an increasing sequence of elementary sets whose union is P. The problem follows by passing to limit $n \rightarrow \infty$ since $\lim _{n} m\left(C_{n}\right)=1$: Indeed, we have a disjoint union

$$
C_{1} \cup\left(C_{2} \backslash C_{1}\right) \cup\left(C_{3} \backslash C_{2}\right) \cup \ldots=P
$$

of elementary sets. It follows (the argument using compactness of P) that $\lim _{n} m\left(C_{n}\right)=1$.
4) Let $\sum_{n=1}^{\infty} x_{n}$ be a series of non-negative real numbers. Show that its sum (which can be ∞) is equal to the supremum of the set of sums $\sum_{n \in S} x_{n}$ where S runs over all finite subsets of the set of natural numbers. Conclude that any sequence of non-negative numbers can be added in any order.
Solution: Let $S_{N}=\{1,2, \ldots, N\}$. By the defintion, $\sum_{n=1}^{\infty} x_{n}$ is the limit of the sequence of partial sums $\sum_{n \in S_{N}} x_{n}$ as $N \rightarrow \infty$. Since x_{n} are non-negative, the sequence of partial sums is monotone increasing, hence $\sum_{n=1}^{\infty} x_{n}$ is the supremum of the set of finite sums $\sum_{n \in S_{N}} x_{n}$. For any finite set S of natural numbers there exists N such that $S \subset S_{N}$. Then

$$
\sum_{n \in S} x_{n} \leq \sum_{n \in S_{N}} x_{n} .
$$

Hence the supremum of the set of all finite sums is equal to the supremum of the set of finite sums taken over S_{N} only. But the former is independent of the ordering of the sequence of real numbers x_{n}.
5) In the following exercises, \mathcal{M} is a σ-algebra of a non-empty set X, that is, a family of subsets of X closed under complements and countable unions, and μ is a σ-measure. Let $A_{1} \supseteq A_{2} \supseteq \ldots$ be a sequence of sets in \mathcal{M}. Let $A=\cap_{i=1}^{\infty} A_{i}$. Prove that $\lim _{i \mapsto \infty} \mu\left(A_{i}\right)=\mu(A)$, assuming that $\mu(X)=1$.
Solution: $A^{c}=\cup_{i=1}^{\infty} A_{i}^{c}$, where A^{c} is the complement of A in X. Since $A_{1}^{c} \subseteq A_{2}^{c} \subseteq \ldots$ it follows that

$$
\lim _{i \mapsto \infty} \mu\left(A_{i}^{c}\right)=\mu\left(A^{c}\right) .
$$

Substitute $\mu\left(A_{i}^{c}\right)=1-\mu\left(A_{i}\right), \mu\left(A^{c}\right)=1-\mu(A)$, and use elementary properties of limits of sequences.

Observe that the statement fails without assuming the measure of A_{1} is finite. Take, for example, $X=\mathbb{R}$ and $A_{n}=[n, \infty)$ then $\mu\left(A_{n}\right)=\infty$, for all $n, A=\emptyset$ and $\mu(A)=0$.
6) A subset of X is called measurable if it belongs to \mathcal{M}. Let $f: X \rightarrow \mathbb{R}$ prove that

$$
\{x \mid f(x)<c\}
$$

is measurable for every $c \in \mathbb{R}$ if and only if

$$
\{x \mid f(x) \leq c\}
$$

is measurable for every $c \in \mathbb{R}$.
Solution: Equivalence of the two follows from the following set-theoretic identities:

$$
\{x \mid f(x)<c\}=\cup_{n}\left\{x \left\lvert\, f(x) \leq c-\frac{1}{n}\right.\right\}
$$

and

$$
\{x \mid f(x) \leq c\}=\cap_{n}\left\{x \left\lvert\, f(x)<c+\frac{1}{n}\right.\right\}
$$

7) Let $f_{n}: X \rightarrow \mathbb{R}$ be a sequence of measurable functions on X. Prove that

$$
g(x)=\inf \left\{f_{1}(x), f_{2}(x), \ldots\right\} \text { and } G(x)=\sup \left\{f_{1}(x), f_{2}(x), \ldots\right\}
$$

are measurable functions.

Solution:

$$
\begin{aligned}
& \{x \mid g(x)<c\}=\cup_{n}\left\{x \mid f_{i} n(x)<c\right\} . \\
& \{x \mid G(x) \leq c\}=\cap_{n}\left\{x \mid f_{n}(x) \leq c\right\} .
\end{aligned}
$$

Now use the previous exercise.
8) Let f be an integrable function on X, such that $f(x) \geq 0$ for all $x \in X$. Prove that $\int_{X} f=0$ if and only if the measure of $A=\{x \in X \mid f(x)>0\}$ is 0 , that is, $f=0$ almost everywhere. Hint consider the sets $A_{n}=\{x \in X \mid f(x)>1 / n\}$ for $n=1,2, \ldots$
Solution: Assume that $\int f_{X}=0$. Let χ_{n} be the characteristic function of A_{n} multiplied by $1 / n$. It is a simple function whose integral is $\mu\left(A_{n}\right) / n$. Since

$$
0=\int_{X} 0 \leq \int_{X} \chi_{n} \leq \int_{X} f=0
$$

it follows that $\mu\left(A_{n}\right)=0$. Now observe that $A_{1} \subseteq A_{2} \subseteq \ldots$ and A is the union of A_{n}. Hence $\mu(A)=\lim _{n} \mu\left(A_{n}\right)=0$.

In the other direction, for every n, let $f_{n}=\sum_{m=1}^{\infty} m \cdot \chi_{X_{m}}$ be the simple function where

$$
X_{m}=\left\{x \in X \left\lvert\, \frac{m-1}{n}<f(x) \leq \frac{m}{n}\right.\right\}
$$

Observe that $\mu\left(X_{m}\right)=0$ if $m>0$. Hence $\int_{X} f_{n}=0$. Moreover, f_{n} converges uniformly to f, hence $\int_{X} f=0$ from the definition of the integral. Observe that this argument gives a bit more: a measurable function f equal 0 almost everywhere is integrable and its integral is 0 .
9) Let $X=(0,1]$, with the usual measure, and let $f(x)=1 / \sqrt{x}$. Use the monotone convergence theorem to prove that f is integrable and compute its integral.
Solution: Let f_{n} be the product of f and the characteristic function of $\left[\frac{1}{n}, 1\right]$. Then f_{n} is a monotone sequence with f point-wise limit. Since f_{n} is continuous on $\left[\frac{1}{n}, 1\right]$, its Lebesgue integral is equal to the Riemann integral which we can compute using the Fundamental Theorem of Calculus:

$$
\int_{1 / n}^{1} \frac{1}{\sqrt{x}} d x=2\left(1-\frac{1}{\sqrt{n}}\right)<2 .
$$

By the MCT f is integrable and

$$
\int_{X} f=\lim _{n} \int_{X} f_{n}=2
$$

