MATH 5210, HW I
 SOLUTIONS

1) In this and the following problem, use $d(x, y)=\max \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right)$ as the distance function on \mathbb{R}^{2}. Use $\epsilon-\delta$ definition of continuity to prove that the multiplication map $\mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous.
Solution: Given $\epsilon>0$, we need to show that there is $\delta>0$ such that $\left|x_{1} x_{2}-y_{1} y_{2}\right|<\epsilon$ if $d(x, y)<\delta$. We can ssume that x and y are contained in a large square $[-M, M]^{2}$. Then

$$
\left|x_{1} x_{2}-y_{1} y_{2}\right|=\left|x_{1} x_{2}-y_{1} x_{2}+y_{1} x_{2}-y_{1} y_{2}\right|<\left|x_{2}\right|\left|x_{1}-y_{1}\right|+\left|y_{1}\right|\left|x_{2}-y_{2}\right|<2 M \delta
$$

so we can take $\delta=\epsilon / 2 M$.
2) Let $p_{i}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the projection on the i-th coordinate. Prove that p_{i} is continuous. Let (X, d) be a metric space. Let $f: X \rightarrow \mathbb{R}^{2}$ be a map, and write $f(x)=\left(f_{1}(x), f_{2}(x)\right)$ for every $x \in X$. In particular we have two functions $f_{i}: X \rightarrow \mathbb{R}, i=1,2$. Prove that f is continuous if and only if f_{1} and f_{2} are.
Solution: If $d(x, y)=\max \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right)<\epsilon$ then $\left|p_{i}(x)-p_{i}(y)\right|=\left|x_{i}-y_{i}\right|<\epsilon$, hence the projection maps are uniformly continuous.

Observe that $f_{i}=p_{i} \circ f$. If f is continuous, then f_{i} is continuous, being a composite of two continuous maps. Now assume that f_{1} and f_{2} are continuous. Observe that

$$
f^{-1}((a, b) \times(c, d))=f_{1}^{-1}((a, b)) \cap f_{2}((c, d)) .
$$

This set is open, since $f_{1}^{-1}((a, b))$ and $f_{2}^{-1}((c, d))$ are open, by continuity. Hence f is continuous.
3) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{n}$. Use the inductive definition $x^{n}=x \cdot x^{n-1}$ and previous exercises to prove that f is continuous.
Solution: By induction. Assume that $x \mapsto x^{n-1}$ is continuous. Then $x \mapsto x^{n}$ is a composite of two maps

$$
x \mapsto\left(x, x^{n-1}\right) \mapsto x \cdot x^{n-1}
$$

where the first is continous by exercise 2) and the second by exercise 1).
4) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function such that $f(x) \geq 0$ for all $x \in[a, b]$. Prove that

$$
\int_{a}^{b} f=0
$$

implies $f(x)=0$ for all $x \in[a, b]$.
Solution: Assume $f \neq 0$, we would like to show that the integral of f is positive. It suffices to find one positive lower sum. Let $c \in(a, b)$ such that $f(c)>0$. Let $\epsilon=f(c) / 2$. Since f is
continuous, there exists $\delta>0$ such that $f(x)>\epsilon$ if $|x-c|<\delta$. Take the partition of $[a, b]$ that includes $[c-\delta, c+\delta]$ as a subsegment. The corresponding lower sum is greater than $2 \delta \epsilon$.
5) Let (X, d) be a metric space. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be two Cauchy sequences in X. Prove that $\left(d\left(x_{n}, y_{n}\right)\right)$ is a Cauchy sequence in \mathbb{R}.
Solution: By the triangle inequality,

$$
d\left(x_{n}, y_{n}\right) \leq d\left(x_{n}, x_{m}\right)+d\left(x_{m}, y_{m}\right)+d\left(y_{m}, y_{n}\right)
$$

and this implies that

$$
d\left(x_{n}, y_{n}\right)-d\left(x_{m}, y_{m}\right) \leq d\left(x_{n}, x_{m}\right)+d\left(y_{n}, y_{m}\right)
$$

By switching the roles of n and m we also get that

$$
d\left(x_{m}, y_{m}\right)-d\left(x_{n}, y_{n}\right) \leq d\left(x_{n}, x_{m}\right)+d\left(y_{n}, y_{m}\right)
$$

The two are equivalent to

$$
\left|d\left(x_{m}, y_{m}\right)-d\left(x_{n}, y_{n}\right)\right| \leq d\left(x_{n}, x_{m}\right)+d\left(y_{n}, y_{m}\right)
$$

Since $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy, for every $\epsilon>0$ there exists N such that $d\left(x_{n}, x_{m}\right)<\epsilon / 2$ and $d\left(y_{n}, y_{m}\right)<\epsilon / 2$ for all $n, m \geq N$. Hence

$$
\left|d\left(x_{m}, y_{m}\right)-d\left(x_{n}, y_{n}\right)\right|<\epsilon
$$

if $n, m \geq N$.
6) Let $K \subset \mathbb{R}$ be a set consisting of 0 and all $1 / n, n=1,2,3, \ldots$ Prove that K is compact directly using the definition, i.e. every open cover has a finite subcover.
Solution: Let $O_{\alpha}, \alpha \in S$, be an open covering of K. Then there exists $\beta \in S$ such that $0 \in O_{\beta}$. Since O_{β} is open, there exists $\epsilon>0$ such that $(-\epsilon, \epsilon) \subset O_{\beta}$. Let N be an integer such that $1 / N<\epsilon$. Then $1 / n \in O_{\beta}$ for all $n \geq N$. It follows that K is covered by O_{β} and finitely many O_{α} needed to cover $1 / n$, for $n<N$.
7) Let $F_{1} \supseteq F_{2} \supseteq \ldots$ be a descending sequence of non-empty compact subsets. Prove that $\cap_{n=1}^{\infty} F_{n}$ is non-empty.
First solution: Pick $x_{n} \in F_{n}$. Since F_{1} is compact, a subsequence of x_{n} converges to a point $x \in F_{1}$. But x is in all F_{n}, since they are closed.
Second solution: If $\cap_{n=1}^{\infty} F_{n}$ is empty, then $F_{1} \backslash F_{n}$ is an open cover of F_{1} that cannot be reduced to a finite subcover, a contradiction.
8) Let (X, d) be a metric space and f_{n} a sequence of continuous functions $f_{n}: X \rightarrow \mathbb{R}$ uniformly converging to f. Let x_{n} be a sequence of points in X such that $\lim _{n} x_{n}=x \in X$. Prove that $\lim _{n} f_{n}\left(x_{n}\right)=f(x)$.
Solution: Let $\epsilon>0$. The function f is continuous, so there exists N_{1} such that $\left|f(x)-f\left(x_{n}\right)\right|<$ $\epsilon / 2$ for all $n>N_{1}$. The sequence converges uniformly to f, so there exists N_{2} such that $\left|f(x)-f_{n}(x)\right|<\epsilon / 2$ for all $n>N_{2}$ and all x. Let N be the grater of N_{1} and N_{2}. If $n>N$ then

$$
\left|f(x)-f_{n}\left(x_{n}\right)\right| \leq\left|f(x)-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-f_{n}\left(x_{n}\right)\right|<\epsilon / 2+\epsilon / 2=\epsilon
$$

9) A subset \mathbb{R}^{n} is convex if for any two points $x, y \in C$, the segment $[x, y]$ is contained in C. Prove that C is connected.
Solution: A point of this exercise is understand how proofs are built on previous proofs. Let E be a convex set. Assume that $E=A \cup B$ where A and B are two non-empty separating sets. Let $a \in A$ and $b \in B$. Let $[a, b]$ be the straight segment connecting a and b. Since E is convex the whole segment is contained in E. Hence $A \cap[a, b]$ and $B \cap[a, b]$ are separating sets for $[a, b]$. (A limit point of $A \cap[a, b]$ is also a limit point of A, hence it is not contained in B, since $\bar{A} \cap B=\emptyset$, and therefore not in $B \cap[a, b]$.) But we proved that the straight segments are connected.
