1) Let V be a normed space and U a closed subspace. For every $x \in V$, let $||x + U|| = \inf\{||x + y|| \mid y \in U\}$.

 (1) Prove that $||x + U||$ is a norm on V/U.
 (2) If V is complete, so is V/U.
 (3) Let $P : V \to V/U$ be $P(x) = x + U$. Prove that P has norm 1.

2) Let $T : V \to W$ be a bounded map. Let U be the kernel of T.

 (1) Prove that U is closed.
 (2) Prove that $||S|| = ||T||$ where $S : V/U \to W$ such that $S(x + U) = T(x)$, for all $x \in V$.

3) Let $T : V \to W$ be a map between two normed spaces, where W is finite dimensional. Let U be the kernel of T. Prove that T is bounded if U is closed.

4) Let (X, \mathcal{M}, μ) be a measure space, and $E \in \mathcal{M}$ of finite and positive measure. Let $T : L^1(X) \to \mathbb{R}$ be defined by $T(f) = \int_E f$. Prove that T is a bounded functional, and compute its norm.

5) Let $T : V \to U$ be a bounded map between two normed spaces. Let $T^* : U^* \to V^*$ be defined by $T^*(f) = f \circ T$ for all $f \in U^*$ (the adjoint map).

 (1) Prove that $||T^*|| = ||T||$.
 (2) If we identify V and U with their canonical images in V^{**} and U^{**} prove that the restriction of T^{**} to V coincides with T.

6) (More magic.) Let V be a space complete with respect to two norms $||\cdot||_1 \leq ||\cdot||_2$. Prove that the norms are equivalent.

7) Let $T : V \to U$ be a linear map between two Banach spaces such that if f is a continuous functional on U, then $f \circ T$ is a continuous functional on V. Prove that T is bounded. Hint: prove that the graph of T is closed, to that end use Theorem 5.8 c on page 159.