1) Please justify all steps in the following:

(1) Prove that \(f(x) = x \exp\left(-\frac{x^2}{2}\right) \) is in \(L^1(\mathbb{R}) \).

(2) Use Theorem 2.27 to compute the derivative of \(g(t) = \int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{2}\right) \cos(tx) \, dx \), where \(t \in \mathbb{R} \).

(3) Use \(\exp\left(-\frac{x^2}{2}\right)' = -x \exp\left(-\frac{x^2}{2}\right) \) and integration by parts to show that \(g(t) \) satisfies a first order differential equation. Solve it to find \(g(t) \).

Solution: (1) The function \(f \) is continuous hence measurable. For integrality, note that \(f \) is odd and positive for \(x \geq 0 \), so it suffices to show integrality on \([0, \infty)\). For every natural number \(n \), let \(f_n = f \cdot \chi_{[0,n]} \), where \(\chi_{[0,n]} \) is the characteristic function of \([0,n]\). This is a monotone sequence of positive functions converging pointwise to \(f \) for \(x \geq 0 \). Next, we use that the Lebesgue integral of \(f \) on \([0,n]\) is equal to the Riemann integral, to compute

\[
\int_{-\infty}^{\infty} f_n(x) \, dx = \int_{0}^{n} f(x) \, dx = -\exp\left(-\frac{x^2}{2}\right)|_0^n = 1 - \exp\left(-\frac{n^2}{2}\right).
\]

It follows, from the monotone convergence theorem, that \(f(x) \) is integrable for \(x \geq 0 \) with integral equal to 1. (2) Fix \(t \) and an integer \(n \) such that \(t \) is contained in the interior of \([-n,n]\). Let \(h(x,t) = \exp\left(-\frac{x^2}{2}\right) \cos(tx) \). Since

\[
\frac{\partial}{\partial t} h(x,t) = -x \exp\left(-\frac{x^2}{2}\right) \sin(tx)
\]

is bounded by \(|f| \) for all \(t \in [-n,n] \),

\[
g'(t) = \int_{-\infty}^{\infty} \frac{\partial}{\partial t} h(x,t) \, dx = \int_{-\infty}^{\infty} -x \exp\left(-\frac{x^2}{2}\right) \sin(tx) \, dx.
\]

(3) Using integration by parts for Riemann integral on the segment \([0,n]\),

\[
\int_{0}^{n} -x \exp\left(-\frac{x^2}{2}\right) \sin(tx) \, dx = \exp\left(-\frac{x^2}{2}\right) \sin(tx)|_0^n - \int_{0}^{n} t \exp\left(-\frac{x^2}{2}\right) \cos(tx) \, dx.
\]

Using the dominated convergence theorem on \([0,\infty)\), we can take the limit \(n \to \infty \), which yields \(g'(t) = -tg(t) \). Thus \(g(t) = C \exp\left(-\frac{t^2}{2}\right) \) and

\[
C = g(0) = \int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{2}\right) \, dx = \sqrt{2\pi}.
\]

2) Let \(\mathcal{M} \subseteq \mathcal{P}(X) \) be the \(\sigma \) algebra generated by an elementary family \(\mathcal{E} \), see the definition on page 23. Let \(\mu \) and \(\nu \) be two positive finite measures on \(\mathcal{M} \), such that \(\mu(E) = \nu(E) \) for all \(E \) in \(\mathcal{E} \). Prove that \(\mu = \nu \).

Solution: Let \(\mathcal{A} \) be the algebra consisting of finite unions of pairwise disjoint elements in \(\mathcal{E} \). It is clear that \(\mu(E) = \nu(E) \) for all \(E \) in \(\mathcal{A} \). Now there are two ways to continue. One: Let \(\mathcal{N} \)
be the set of all \(E \in X \) such that \(\mu(E) = \nu(E) \). Then \(\mathcal{N} \) is a monotone class and it contains \(\mathcal{A} \). Hence \(\mathcal{N} = \mathcal{M} \). The other: \(\mu \) and \(\nu \) are pre-measures on \(\mathcal{A} \). Any pre-measure on \(\mathcal{A} \) uniquely extends to a measure on \(\mathcal{M} \). Hence \(\mu = \nu \) on \(\mathcal{M} \).

In the following exercises \(\mu \) denotes the standard Lebesgue measure on the Borel algebra of \(\mathbb{R}^n \). Let \(P^n \) be the open punctured ball \(0 < ||x|| < 1 \) and \(S^{n-1} \) the sphere \(||x|| = 1 \), where \(||x|| \) is the standard norm on \(\mathbb{R}^n \). Note that \(P^n \) is homeomorphic to \((0,1) \times S^{n-1} \). Let \(d\nu \) denote the standard Lebesgue measure on \((0,1)\).

3) Take \(n=2 \) above. Let \(d\varphi \) be the Lebesgue measure on the unit circle \(S^1 \) (the arc length). Let \(d\varphi \) be the product measure on the Borel algebra of \((0,1) \times S^1 \approx P^2 \). Prove that for every Borel set \(E \) in \(P^2 \),

\[
\mu(E) = \int_E r \, dr \, d\varphi.
\]

Solution: Let \(\nu(E) = \int_E r \, dr \, d\varphi \). Then \(\nu \) and \(\mu \) are two measure on the Borel algebra of \(P^2 \). By problem 2), it suffices to show that \(\mu(E) = \nu(E) \) on elementary sets which, in this case, can be taken to be products

\[
(a,b] \times [\alpha, \beta] = (0,b] \times [\alpha, \beta] \setminus (0,a] \times [\alpha, \beta]
\]
i.e. differences of pizza slices of radii \(b \) and \(a \), and the same angle \(\beta - \alpha \), where other shapes of brackets are also allowed. By Fubini,

\[
\nu((0,b] \times [\alpha, \beta]) = \int_a^b \int_\alpha^\beta \, rd\varphi \, dr = \frac{1}{2} b^2 (\beta - \alpha)
\]

and that is indeed the measure of the pizza slice. (If we take these measures as granted. A proper way how to decompose the Lebesgue measure on \(P^n \) in polar coordinates is the following two exercises.)

4) Let \(F \) be a Borel set in \(S^{n-1} \). Then \(c(F) = (0,1) \times F \) is a Borel set in \(P^n \). (Why?) Let \(\nu(F) = n\mu(c(F)) \). Prove that \(\nu \) is a Borel measure on \(S^{n-1} \) invariant under the orthogonal transformations.

Solution: Since \(P^n \) is homeomorphic to \((0,1) \times S^{n-1} \) the Borel algebra of \(P^n \) is generated by products of Borel sets in \((0,1)\) and in \(S^{n-1} \), hence \(c(F) \) is a Borel set in \(P^n \). The invariance of the Lebesgue measure for an orthogonal transformation \(g \) (Corollary 2.46) implies that \(\mu(g(c(F))) = \mu(c(F)) \). Since \(g(c(F)) = c(g(F)) \), it follows that \(\nu(F) = \nu(g(F)) \). That \(\nu \) is a measure is easy, it follows from the observation that if \(F \) is a disjoint union of \(F_i, i = 1, 2, \ldots \) then \(c(F) \) is a disjoint union of \(c(F_i), i = 1, 2, \ldots \). Hence \(\sigma \)-additivity of \(\nu \) is a consequence of \(\sigma \)-additivity of \(\mu \).

5) Let \(\nu \) be the Borel measure on \(S^{n-1} \) as in 4). Let \(dr \otimes \nu \) denote the product measure on the Borel algebra of \((0,1) \times S^{n-1} \approx P^n \). Prove that for every Borel set \(E \) in \(P^n \),

\[
\mu(E) = \int_E r^{n-1} dr \otimes \nu.
\]
Hint: It suffices to do this for $E = (0, a) \times F$, where F is a Borel set in S^{n-1} (why?) and in this case it reduces to proving that $\mu((0, a) \times F) = a^n\mu((0, 1) \times F)$. Why is the last identity true?

Solution: Let $\nu(E) = \int_E r^{n-1}dr \otimes \nu$. Then ν and μ are two measures on the Borel algebra of P^n. In order to show that $\mu = \nu$, it suffices to do it on an elementary family generating the Borel algebra. And we take the elementary family to consist of $(a, b] \times F$, where F is any Borel set in S^{n-1}. Furthermore, as in problem 3), we can reduce to checking $\nu(E) = \mu(E)$ to $E = (0, b] \times F$. By Fubini

$$\nu(E) = \int_0^b \int_F r^{n-1}dr \otimes \nu = \frac{b^n}{n} \nu(F).$$

On the other hand, $(0, b] \times F$ is the image of $(0, 1] \times F$ under the linear map $v \mapsto b \cdot v$. By Theorem 2.44

$$\mu((0, b] \times F) = b^n\mu((0, 1] \times F)$$

and the right hand side is equal to $\frac{b^n}{n} \nu(F)$ by the definition of ν.

The problem 5) combined with 14) on page 52 (the previous HW) gives us the formula for integration in “polar” coordinates in \mathbb{R}^n, first on any ball of a finite radius n and then by monotone convergence in general.