HW III FOR MATH 6210 SOLUTIONS

- 1) Let V be a normed space and U a closed subspace. For every $x \in V$, let $||x + U|| = \inf\{||x + y|| \mid y \in U\}$.
 - (1) Prove that ||x + U|| is a norm on V/U.
 - (2) If V is complete, so is V/U.
 - (3) Let $P: V \to V/U$ be P(x) = x + U. Prove that P has norm 1.

Solution: (1) If ||x+U|| = 0, then there is a sequence $x_n = x + y_n \in x + U$ such whose limit is 0. But this mens then limit of y_n is -x, hence $x \in U$ since U is closed. Hence x + U = U i.e. we have a norm, not a semi-norm. The second property is trivial, triangle inequality: Let $\epsilon > 0$. There exists $x' \in x + U$ and $y' \in y + U$ such that $||x'|| < ||x + U|| + \epsilon/2$ and $||y'|| < ||y + U|| + \epsilon/2$. Then

$$||x + y + U|| \le ||x' + y'|| \le ||x'|| + ||y'|| \le ||x + U|| + ||y + U|| + \epsilon.$$

- (2) Let $\sum_i x_i + U$ be absolutely converging series in V/U. For every i let $x_i' \in x_i + U$ such that $||x_i'|| < ||x + U|| + 1/2^i$. Then $\sum_i x_i'$ is an absolutely converging series in V, so it has a limit, say x. Then x + U is the limit of $\sum_i x_i + U$ by continuity of the projection map P, which is obviously bounded i.e. $||P|| \le 1$. (3) The easiest way to prove this is to observe that ||x + U|| < 1 iff there exists $x' \in x + U$ such that ||x'|| < 1. In other words P maps the open unit ball in V onto the open unit ball in V/U.
- 2) Let $T: V \to W$ be a bounded map. Let U be the kernel of T.
 - (1) Prove that U is closed.
 - (2) Prove that ||S|| = ||T|| where $S: V/U \to W$ such that S(x+U) = T(x), for all $x \in V$.

Solution: (1) Since T is continuous, $U = T^{-1}(0)$ is a closed set. (2) Observe that it is convenient to define ||T|| as the supremum of ||T(x)|| for ||x|| < 1. Now it is clear that ||T|| = ||S||, see (3) of the first exercise.

3) Let $T:V\to W$ be a map between two normed spaces, where W is finite dimensional. Let U be the kernel of T. Prove that T is bounded if U is closed.

Solution: If U is closed then, by the first exercise, V/U is a normed space under the norm $||x+U|| = \inf\{||x+y|| \mid y \in U\}$. The induced map $S: V/U \to W$ is automatically continuous, since it is a map between two finite-dimensional spaces. Now T is bounded since it is a composite of two bounded maps, P and S, where P is as in the first exercise, or ||T|| = ||S|| using the second exercise.

4) Let (X, \mathcal{M}, μ) be a measure space, and $E \in \mathcal{M}$ of finite and positive measure. Let $T: L^1(X) \to \mathbb{R}$ be defined by $T(f) = \int_E f$. Prove that T is a bounded functional, and compute its norm.

Solution: $|T(f)| = |\int_E f| \le \int_E |f| \le \int_X |f| = ||f||$. Hence $|T(f)| \le ||f||$, but this equality is achieved for $f = \chi_E$, hence ||T|| = 1.

- 5) Let $T: V \to U$ be a bounded map between two normed spaces. Let $T^*: U^* \to V^*$ be defined by $T^*(f) = f \circ T$ for all $f \in U^*$ (the adjoint map).
 - (1) Prove that $||T^*|| = ||T||$.
 - (2) If we identify V and U with their canonical images in V^{**} and U^{**} prove that the restriction of T^{**} to V coincides with T.

Solution: (1) $||T^*(f)|| = ||f \circ T|| \le ||f|| \cdot ||T||$ (this is true for a composite of any two bounded operators) hence $||T^*|| \le ||T||$. Let $\epsilon > 1$. Then there exists $v \in V$, ||v|| = 1 such that $||T(v)|| > ||T|| - \epsilon$. By Hahn-Banach, there exists $f \in U^*$ such that ||f|| = 1 and $||T^*(f)|| = ||T(v)||$. Thus $||T^*(f)|| \ge ||T(v)||$ and $||T^*|| \ge ||T(v)||$ since $||T^*||$ is the supremum of $||T^*(f)||$ over all ||f|| = 1. Hence $||T^*|| > ||T|| - \epsilon$, for any $\epsilon > 0$, and this is the other inequality.

6) Let V = C([0,1]) be the space of continuous functions equipped with the sup norm. Let $U = C^1([0,1])$ be the subspace of continuously differentiable functions. Let $T: U \to V$ be defined by T(f) = f'. Prove that the graph of T is closed, and that T is not bounded. Let V be a space complete with respect to two norms $||\cdot||_1 \le ||\cdot||_2$. Prove that the norms are equivalent.

Solution: Let ||f|| denote the sup norm of $f \in V$. The space V is a Banach space with respect to this norm, while U is a (dense) subspace. The operator T is unbounded, since $||x^n|| = 1$ but $||T(x^n)|| = ||nx^{n-1}|| = n$, for $n = 0, 1, 2, \ldots$ The space U is a also a Banach space, however, with respect to ||f|| + ||f'||. On $U \times V$ we can take the norm ||(f,g)|| = ||f|| + ||g||. Hence on the graph (f, f') this gives ||f|| + ||f'||, but U is complete under this norm, so the graph is closed.

7) Let $T: V \to U$ be a linear map between two Banach spaces such that if f is a continuous functional on U, then $f \circ T$ is a continuous functional on V. Prove that T is bounded. Hint: prove that the graph of T is closed, to that end use Theorem 5.8 c on page 159.

Solution: Let $(v_n, u_n) \in V \times U$ be a Cauchy sequence in the graph of T, i.e. $T(v_n) = u_n$ for all n. Since $V \times U$ is complete (equivalently both V and U are complete) there exists $(v, u) \in V \times U$, the limit of the sequence (v_n, u_n) . In other words, v is the limit of v_n and v of v_n . We need to prove that $T(v) = v_n$. If not then $T(v) = v_n$ is a non-zero element of v_n and by Hahn-Banach there exists a continuous functional v_n on v_n such that v_n on the other hand, v_n of v_n of or all v_n and v_n is continuous, hence v_n on a contradiction.