
HW III FOR MATH 6210

SOLUTIONS

1) Let V be a normed space and U a closed subspace. For every x ∈ V , let ||x + U || =
inf{||x+ y|| | y ∈ U}.

(1) Prove that ||x+ U || is a norm on V/U .
(2) If V is complete, so is V/U .
(3) Let P : V → V/U be P (x) = x+ U . Prove that P has norm 1.

Solution: (1) If ||x+U || = 0, then there is a sequence xn = x+ yn ∈ x+U such whose limit
is 0. But this mens then limit of yn is −x, hence x ∈ U since U is closed. Hence x+ U = U
i.e. we have a norm, not a semi-norm. The second property is trivial, triangle inequality:
Let ε > 0. There exists x′ ∈ x + U and y′ ∈ y + U such that ||x′|| < ||x + U || + ε/2 and
||y′|| < ||y + U ||+ ε/2. Then

||x+ y + U || ≤ ||x′ + y′|| ≤ ||x′||+ ||y′|| ≤ ||x+ U ||+ ||y + U ||+ ε.

(2) Let
∑

i xi + U be absolutely converging series in V/U . For every i let x′i ∈ xi + U such
that ||x′i|| < ||x+ U ||+ 1/2i. Then

∑
i x
′
i is an absolutely converging series in V , so it has a

limit, say x. Then x + U is the limit of
∑

i xi + U by continuity of the projection map P ,
which is obviously bounded i.e. ||P || ≤ 1. (3) The easiest way to prove this is to observe that
||x+U || < 1 iff there exists x′ ∈ x+U such that ||x′|| < 1. In other words P maps the open
unit ball in V onto the open unit ball in V/U .

2) Let T : V →W be a bounded map. Let U be the kernel of T .

(1) Prove that U is closed.
(2) Prove that ||S|| = ||T || where S : V/U → W such that S(x + U) = T (x), for all

x ∈ V .

Solution: (1) Since T is continuous, U = T−1(0) is a closed set. (2) Observe that it is
convenient to define ||T || as the supremum of ||T (x)|| for ||x|| < 1. Now it is clear that
||T || = ||S||, see (3) of the first exercise.

3) Let T : V →W be a map between two normed spaces, where W is finite dimensional. Let
U be the kernel of T . Prove that T is bounded if U is closed.

Solution: If U is closed then, by the first exercise, V/U is a normed space under the norm
||x + U || = inf{||x + y|| | y ∈ U}. The induced map S : V/U → W is automatically
continuous, since it is a map between two finite-dimensional spaces. Now T is bounded since
it is a composite of two bounded maps, P and S, where P is as in the first exercise, or
||T || = ||S|| using the second exercise.
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4) Let (X,M, µ) be a measure space, and E ∈ M of finite and positive measure. Let
T : L1(X) → R be defined by T (f) =

∫
E f . Prove that T is a bounded functional, and

compute its norm.

Solution: |T (f)| = |
∫
E f | ≤

∫
E |f | ≤

∫
X |f | = ||f ||. Hence |T (f)| ≤ ||f ||, but this equality is

achieved for f = χE , hence ||T || = 1.

5) Let T : V → U be a bounded map between two normed spaces. Let T ∗ : U∗ → V ∗ be
defined by T ∗(f) = f ◦ T for all f ∈ U∗ (the adjoint map).

(1) Prove that ||T ∗|| = ||T ||.
(2) If we identify V and U with their canonical images in V ∗∗ and U∗∗ prove that the

restriction of T ∗∗ to V coincides with T .

Solution: (1) ||T ∗(f)|| = ||f ◦ T || ≤ ||f || · ||T || (this is true for a composite of any two
bounded operators) hence ||T ∗|| ≤ ||T ||. Let ε > 1. Then there exists v ∈ V , ||v|| = 1
such that ||T (v)|| > ||T || − ε. By Hahn-Banach, there exists f ∈ U∗ such that ||f || = 1 and
T ∗(f)(v) = f(T (v)) = ||T (v)||. Thus ||T ∗(f)|| ≥ ||T (v)|| and ||T ∗|| ≥ ||T (v)|| since ||T ∗|| is
the supremum of ||T ∗(f)|| over all ||f || = 1. Hence ||T ∗|| > ||T || − ε, for any ε > 0, and this
is the other inequality.

6) Let V = C([0, 1]) be the space of continuous functions equipped with the sup norm. Let
U = C1([0, 1]) be the subspace of continuously differentiable functions. Let T : U → V be
defined by T (f) = f ′. Prove that the graph of T is closed, and that T is not bounded. Let
V be a space complete with respect to two norms || · ||1 ≤ || · ||2. Prove that the norms are
equivalent.

Solution: Let ||f || denote the sup norm of f ∈ V . The space V is a Banach space with respect
to this norm, while U is a (dense) subspace. The operator T is unbounded, since ||xn|| = 1
but ||T (xn)|| = ||nxn−1|| = n, for n = 0, 1, 2, . . .. The space U is a also a Banach space,
however, with respect to ||f ||+ ||f ′||. On U ×V we can take the norm ||(f, g)|| = ||f ||+ ||g||.
Hence on the graph (f, f ′) this gives ||f ||+ ||f ′||, but U is complete under this norm, so the
graph is closed.

7) Let T : V → U be a linear map between two Banach spaces such that if f is a continuous
functional on U , then f ◦ T is a continuous functional on V . Prove that T is bounded. Hint:
prove that the graph of T is closed, to that end use Theorem 5.8 c on page 159.

Solution: Let (vn, un) ∈ V × U be a Cauchy sequence in the graph of T , i.e. T (vn) = un
for all n. Since V × U is complete (equivalently both V and U are complete) there exists
(v, u) ∈ V × U , the limit of the sequence (vn, un). In other words, v is the limit of vn and u
of un. We need to prove that T (v) = u. If not then T (v)− u is a non-zero element of U , and
by Hahn-Banach there exists a continuous functional f on U such that f(T (u)− v) 6= 0. On
the other hand, f(T (un)− vn) = 0 for all n and f ◦ T is continuous, hence f(T (u)− v) = 0,
a contradiction.


