
SOLUTIONS TO HW II FOR MATH 6210

14, page 52. To prove that λ is a measure, we need to check two properties. The first is
λ(∅) = 0. This follows from f · χ∅ = 0. Next, let E = ∪∞n=1En be a disjoint union of
measurable sets. The second property is λ(E) =

∑∞
n=1 λ(En). To that end, let g = f · χE

and gn = f · χEn . Then the positive series
∑∞

n=1 gn converges monotonely to g. Now the
second property follows by a simple application of the monotone convergence theorem.

To check that
∫
g dλ =

∫
gf dµ, after it has been checked for simple g, let φn be a monotone

sequence of positive simple functions converging to g. Then φnf is a monotone sequence
of measurable functions converging to gf . Hence, by applying the monotone convergence
theorem twice, ∫

g dλ = lim
n→∞

∫
φn dλ = lim

n→∞

∫
φnf dµ =

∫
gf dµ.

15, page 52. Apply the monotone convergence theorem to the sequence gn = f1−fn. Remark:
Problem 6) in the first HW is a special case, take fn to be the characteristic function of An.

16, page 52. First solution.
∫
f is the supremum of

∫
φ where φ is a simple function such

that f ≥ φ. Let φ be such that
∫
φ >

∫
f − ε. Let E be the support of φ i.e. the set of points

x such that φ(x) > 0. From the definition of simple functions E has a finite measure, and∫
E
f ≥

∫
E
φ =

∫
φ >

∫
f − ε.

Second solution. Let En = {x|f(x) > 1/n}. Let fn = f · χEn . Then fn is a monotone
sequence converging to f point-wise. By the monotone convergence theorem, there exists n
such that ∫

fn =

∫
En

f >

∫
f − ε.

It remains to show that µ(En) is finite. Since f > 1
nχEn ,∫

f >

∫
1

n
χEn =

1

n
µ(En),

the claim follows.

23, page 59, part b. We need to show that h = g and H = G a.e. where g and G are defined as
supremum and infimum, respectively, of sequences of simple functions gn and Gn computing
the Riemann lower and upper sums arising from a nested sequence of divisions ti < ti+1 of
(a, b], one for each n, where sup(ti+1− ti) goes to 0, as n increases. Let E be the set of all end
points of the intervals (ti, ti+1) for all n. This is a countable set, hence of Lebesgue measure
0, and we shall show that h(x) = g(x) for x not in E. So fix x not in E. For every δ > 0,
let hδ(x) = inf |x−y|<δ f(y). It suffices to show that for every δ > 0 there exists n such that
gn(x) ≥ hδ(x) and, conversely, for every n there exists δ > 0 such that hδ(x) ≥ gn(x). The
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first inequality: given δ > 0, take n large enough such that ti+1 − ti < δ for all segments in
the division defining gn. The second inequality: given n, let (ti, ti+1) be the segment in the
corresponding division containing x. Take δ > 0 such that (x − δ, x + δ) ⊆ (ti, ti+1). (And
this can be done if x is not in E.)

Since f is Riemann integrable iff g = G a.e. the upshot of this problem is that f is
Riemann integrable iff h = H a.e. hence iff the set of points where f is not continuous is of
the Lebesgue measure 0.

26, page 60. First solution. Let xn be a sequence converging to x. Then (I am assuming here
that xn < x, a similar argument works for xn > x)

F (x)− F (xn) =

∫
(xn,x]

f(x) dx =

∫
fn(x) dx

where fn = f ·χ(xn,x]. The sequence fn is dominated by f and the limit is the delta function
at x, whose integral is 0, since µ({x}) = 0. Hence limn→∞ F (xn) = F (x) be the dominated
convergence theorem. Second solution. If we write f = f+−f− where f+ and f− are positive
functions, then F = F+ − F−, hence it suffices to prove continuity of F assuming that f is
positive. But then f defines a finite measure on R, as in the problem 14 above. Hence F is
continuous by problem 7) in the first HW, since µ({x}) = 0 for the standard measure on R.


