SOLUTIONS TO HW II FOR MATH 6210

14, page 52. To prove that A is a measure, we need to check two properties. The first is
A(0) = 0. This follows from f - xp = 0. Next, let E = U2, E, be a disjoint union of
measurable sets. The second property is A(E) = > o2 | A(E ) To that end, let g = f - xE
and g, = f - xg,. Then the positive series >, g, converges monotonely to g. Now the
second property follows by a simple application of the monotone convergence theorem.

To check that [ g dX\ = [ gf du, after it has been checked for simple g, let ¢, be a monotone
sequence of positive simple functions converging to g. Then ¢, f is a monotone sequence
of measurable functions converging to gf. Hence, by applying the monotone convergence

theorem twice,
/gd>\= lim /qbn dA = lim /sbnfdu:/gf dp.
n—o00 n—00

15, page 52. Apply the monotone convergence theorem to the sequence g, = f1— f,. Remark:
Problem 6) in the first HW is a special case, take f, to be the characteristic function of A,.

16, page 52. First solution. [ f is the supremum of [ ¢ where ¢ is a simple function such
that f > ¢. Let ¢ be such that [ ¢ > [ f—e. Let E be the support of ¢ i.e. the set of points
x such that ¢(z) > 0. From the definition of simple functions F has a finite measure, and

[t=[o=[o>[1-c

Second solution. Let E,, = {z|f(x) > 1/n}. Let f, = f - xg,. Then f, is a monotone
sequence converging to f point-wise. By the monotone convergence theorem, there exists n

such that
[efore o

It remains to show that u(E,) is finite. Since f > lXE",
1
/f>/ —XB, = _p(En),

23, page 59, part b. We need to show that h = g and H = G a.e. where g and G are defined as
supremum and infimum, respectively, of sequences of simple functions ¢, and G,, computing
the Riemann lower and upper sums arising from a nested sequence of divisions ¢; < t;41 of
(a, b, one for each n, where sup(t;+1 —t;) goes to 0, as n increases. Let E be the set of all end
points of the intervals (¢;,¢;+1) for all n. This is a countable set, hence of Lebesgue measure
0, and we shall show that h(z) = g(x) for z not in E. So fix  not in E. For every ¢ > 0,
let hs(z) = inf|,_y <5 f(y). It suffices to show that for every § > 0 there exists n such that
gn(x) > hs(x) and, conversely, for every n there exists § > 0 such that hs(x) > gn(z). The
1

the claim follows.



2 SOLUTIONS TO HW II FOR MATH 6210

first inequality: given & > 0, take n large enough such that ¢;11 — t; < ¢ for all segments in
the division defining g,,. The second inequality: given n, let (¢;,t;+1) be the segment in the
corresponding division containing x. Take § > 0 such that (z — 0,z 4+ J) C (¢;,ti41). (And
this can be done if x is not in E.)

Since f is Riemann integrable iff ¢ = G a.e. the upshot of this problem is that f is
Riemann integrable iff h = H a.e. hence iff the set of points where f is not continuous is of
the Lebesgue measure 0.

26, page 60. First solution. Let z,, be a sequence converging to . Then (I am assuming here
that x,, < z, a similar argument works for z,, > )

F(x) — F(zy) = /(xmx} flx) de = /fn(:c) dx

where fr, = [+ X(z,,2- The sequence f, is dominated by f and the limit is the delta function
at =, whose integral is 0, since p({z}) = 0. Hence lim,_,~ F(x,) = F(x) be the dominated
convergence theorem. Second solution. If we write f = f+— f~ where f™ and f~ are positive
functions, then FF = '™ — F'~, hence it suffices to prove continuity of F' assuming that f is
positive. But then f defines a finite measure on R, as in the problem 14 above. Hence F' is
continuous by problem 7) in the first HW, since u({z}) = 0 for the standard measure on R.



