14, page 52. To prove that \(\lambda \) is a measure, we need to check two properties. The first is \(\lambda(\emptyset) = 0 \). This follows from \(f \cdot \chi_\emptyset = 0 \). Next, let \(E = \bigcup_{n=1}^{\infty} E_n \) be a disjoint union of measurable sets. The second property is \(\lambda(E) = \sum_{n=1}^{\infty} \lambda(E_n) \). To that end, let \(g = f \cdot \chi_E \) and \(g_n = f \cdot \chi_{E_n} \). Then the positive series \(\sum_{n=1}^{\infty} g_n \) converges monotonely to \(g \). Now the second property follows by a simple application of the monotone convergence theorem.

To check that \(\int g \, d\lambda = \int g \, d\mu \), after it has been checked for simple \(g \), let \(\phi_n \) be a monotone sequence of positive simple functions converging to \(g \). Then the positive series \(\sum_{n=1}^{\infty} \phi_n \) converges monotonely to \(\phi \). Hence, by applying the monotone convergence theorem twice,

\[
\int g \, d\lambda = \lim_{n \to \infty} \int \phi_n \, d\lambda = \lim_{n \to \infty} \int \phi_n \, d\mu = \int g \, d\mu.
\]

15, page 52. Apply the monotone convergence theorem to the sequence \(g_n = f_1 - f_n \). Remark: Problem 6) in the first HW is a special case, take \(f_n \) to be the characteristic function of \(A_n \).

16, page 52. First solution. \(\int f \) is the supremum of \(\int \phi \) where \(\phi \) is a simple function such that \(f \geq \phi \). Let \(\phi \) be such that \(\int \phi > \int f - \epsilon \). Let \(E \) be the support of \(\phi \), i.e. the set of points \(x \) such that \(\phi(x) > 0 \). From the definition of simple functions \(E \) has a finite measure, and

\[
\int_E f \geq \int_E \phi = \int \phi > \int f - \epsilon.
\]

Second solution. Let \(E_n = \{ x | f(x) > 1/n \} \). Let \(f_n = f \cdot \chi_{E_n} \). Then \(f_n \) is a monotone sequence converging to \(f \) point-wise. By the monotone convergence theorem, there exists \(n \) such that

\[
\int f_n = \int_{E_n} f > \int f - \epsilon.
\]

It remains to show that \(\mu(E_n) \) is finite. Since \(f > \frac{1}{n} \chi_{E_n} \),

\[
\int f > \int \frac{1}{n} \chi_{E_n} = \frac{1}{n} \mu(E_n),
\]

the claim follows.

23, page 59, part b. We need to show that \(h = g \) and \(H = G \) a.e. where \(g \) and \(G \) are defined as supremum and infimum, respectively, of sequences of simple functions \(g_n \) and \(G_n \) computing the Riemann lower and upper sums arising from a nested sequence of divisions \(t_i < t_{i+1} \) of \((a, b] \), one for each \(n \), where \(\sup(t_{i+1} - t_i) \) goes to 0, as \(n \) increases. Let \(E \) be the set of all end points of the intervals \((t_i, t_{i+1}) \) for all \(n \). This is a countable set, hence of Lebesgue measure 0, and we shall show that \(h(x) = g(x) \) for \(x \) not in \(E \). So fix \(x \) not in \(E \). For every \(\delta > 0 \), let \(h_\delta(x) = \inf_{|x-y|<\delta} g(y) \). It suffices to show that for every \(\delta > 0 \) there exists \(n \) such that \(g_n(x) \geq h_\delta(x) \) and, conversely, for every \(n \) there exists \(\delta > 0 \) such that \(h_\delta(x) \geq g_n(x) \). The
first inequality: given $\delta > 0$, take n large enough such that $t_{i+1} - t_i < \delta$ for all segments in the division defining g_n. The second inequality: given n, let (t_i, t_{i+1}) be the segment in the corresponding division containing x. Take $\delta > 0$ such that $(x - \delta, x + \delta) \subseteq (t_i, t_{i+1})$. (And this can be done if x is not in E.)

Since f is Riemann integrable iff $g = G$ a.e. the upshot of this problem is that f is Riemann integrable iff $h = H$ a.e. hence iff the set of points where f is not continuous is of the Lebesgue measure 0.

26, page 60. First solution. Let x_n be a sequence converging to x. Then (I am assuming here that $x_n < x$, a similar argument works for $x_n > x$)

$$F(x) - F(x_n) = \int_{(x_n, x]} f(x) \, dx = \int f_n(x) \, dx$$

where $f_n = f \cdot \chi_{(x_n, x]}$. The sequence f_n is dominated by f and the limit is the delta function at x, whose integral is 0, since $\mu(\{x\}) = 0$. Hence $\lim_{n \to \infty} F(x_n) = F(x)$ be the dominated convergence theorem. Second solution. If we write $f = f^+ - f^-$ where f^+ and f^- are positive functions, then $F = F^+ - F^-$, hence it suffices to prove continuity of F assuming that f is positive. But then f defines a finite measure on \mathbb{R}, as in the problem 14 above. Hence F is continuous by problem 7) in the first HW, since $\mu(\{x\}) = 0$ for the standard measure on \mathbb{R}.