MATH 5210, HW II DUE MARCH 04

1) A metric space X is separable if it contains a dense countable set S. Prove that any open set V in X is a union of balls centered at points in S and with rational radii. (Since the set of such balls is countable, it follows that any open set is a countable union of balls).
2) Let $X=[0,1]^{2}$. Choose the distance on X wisely, and use the previous exercise to prove that any open set in X is Lebesgue measurable.
3) Let $P=[0,1]^{2}$. If E and F are two elementary sets such that $E \cup F=P$ then $m(E \cap F)=$ $m(E)+m(F)-1$. Now assume $E=\cup_{i=1}^{\infty} E_{i}$ and $F=\cup_{i=1}^{\infty} F_{i}$, disjoint unions of elementary sets each, and $E \cup F=P$. Observe that $E \cap F$ is the disjoint union of $E_{i} \cap F_{j}$. Prove that

$$
\sum_{i, j} m\left(E_{i} \cap F_{j}\right)=\sum_{i} m\left(E_{i}\right)+\sum_{j} m\left(F_{j}\right)-1 .
$$

4) Let $\sum_{n=1}^{\infty} x_{n}$ be a series of non-negative real numbers. Show that its sum (which can be ∞) is equal to the supremum of the set of sums $\sum_{n \in S} x_{n}$ where S runs over all finite subsets of the set of natural numbers. Conclude that any sequence of non-negative numbers can be added in any order.
5) In the following exercises, \mathcal{M} is a σ-algebra of a non-empty set X, that is, a family of subsets of X closed under complements and countable unions, and μ is a σ-measure. Let $A_{1} \supseteq A_{2} \supseteq \ldots$ be a sequence of sets in \mathcal{M}. Let $A=\cap_{i=1}^{\infty} A_{i}$. Prove that $\lim _{i \mapsto \infty} \mu\left(A_{i}\right)=\mu(A)$, assuming that $\mu(X)=1$.
6) A subset of X is called measurable if it belongs to \mathcal{M}. Let $f: X \rightarrow \mathbb{R}$ prove that

$$
\{x \mid f(x)<c\}
$$

is measurable for every $c \in \mathbb{R}$ if and only if

$$
\{x \mid f(x) \leq c\}
$$

is measurable for every $c \in \mathbb{R}$.
7) Let $f_{n}: X \rightarrow \mathbb{R}$ be a sequence of measurable functions on X. Prove that

$$
g(x)=\inf \left\{f_{1}(x), f_{2}(x), \ldots\right\} \text { and } G(x)=\sup \left\{f_{1}(x), f_{2}(x), \ldots\right\}
$$

are measurable functions.
8) Let f be an integrable function on X, such that $f(x) \geq 0$ for all $x \in X$. Prove that $\int_{X} f=0$ if and only if the measure of $A=\{x \in X \mid f(x)>0\}$ is 0 , that is, $f=0$ almost everywhere. Hint consider the sets $A_{n}=\{x \in X \mid f(x)>1 / n\}$ for $n=1,2, \ldots$.
9) Let $X=(0,1]$, with the usual measure, and let $f(x)=1 / \sqrt{x}$. Use the monotone convergence theorem to prove that f is integrable and compute its integral.

