1) Let \(f : [a, b] \to \mathbb{R} \) be a continuous function such that \(f \geq 0 \). Show that \(f = 0 \) if and only if \(\int_a^b f(x) \, dx = 0 \).

2) Let \(f : [0, 1] \to \mathbb{R} \) be defined by \(f(x) = 1 \) if \(x \) is in the Cantor set and \(f(x) = 0 \) otherwise. Prove that \(f \) is Riemann integrable and compute its integral.

3) Let \(V = \mathcal{R}[a, b] \) the vector space of Riemann integrable functions on \([a, b] \). Prove that
\[
||f|| = \int_a^b |f(x)| \, dx
\]
defines a semi-norm on \(V \) i.e. (1) \(||f|| \geq 0 \) (2) \(||\lambda \cdot f|| = |\lambda| \cdot ||f|| \) (3) \(||f + g|| \leq ||f|| + ||g|| \) where \(f, g \in V \) and \(\lambda \in \mathbb{R} \) (a norm satisfies \(||f|| = 0 \) implies \(f = 0 \)). Give an example of a non-zero function \(f \in V \) such that \(||f|| = 0 \). Let \(U = C[a, b] \) be the subspace of continuous functions on \([a, b] \). Prove that \(||f|| \) is a norm when restricted to \(U \).

4) Continuing with notation and setting of the previous exercise. Then
\[
d(f, g) = ||f - g||
\]
defines a semi-distance on \(V \) i.e. all axioms of the distance function are satisfied except there are \(f \neq g \) such that \(d(f, g) = 0 \). To get a metric space one needs to identify all \(f \) and \(g \) such that \(d(f, g) = 0 \). More precisely, we have an equivalence relation \(f \sim g \) if \(d(f, g) = 0 \) and then \(\bar{V} \), the set of equivalence classes, is a proper metric space. On the other hand, \(d \) is a proper distance function on \(U \) and \(U \) naturally embeds into \(\bar{V} \). Let

\[
f_n(x) = \begin{cases}
-1 & \text{for } -1 \leq x \leq -1/n \\
nx & \text{for } -1/n \leq x \leq 1/n \\
1 & \text{for } 1/n \leq x \leq 1
\end{cases}
\]
be a sequence in \(U = C[-1, 1] \). Prove that \(f_n \) is a Cauchy sequence in \(U \). It does not have a limit point in \(U \), however it does in \(\bar{V} \). Find that limit.

5) Let \(f : [1, \infty) \to \mathbb{R} \) be a non-negative function such that \(f \) is integrable on the closed segment \([1, c]\) for every \(c \geq 1 \). One can define \(\int_1^\infty f(x) \, dx \) as the supremum of \(\int_1^c f(x) \, dx \) over all \(c \). Assume that \(f \) is monotone decreasing. Prove that \(\int_1^\infty f(x) \, dx \) is finite if and only if \(\sum_{n=1}^{\infty} f(n) \) converges. Apply this to prove that the series \(\sum_{n=1}^{\infty} n^{-s} \) for \(s > 0 \) is convergent if and only if \(s > 1 \).

6) Let \((X, d) \) be a metric space and \(f_n \) a sequence of continuous functions \(f_n : X \to \mathbb{R} \) uniformly converging to \(f \). Let \(x_n \) be a sequence of points in \(X \) such that \(\lim_n x_n = x \in X \). Prove that \(\lim_n f_n(x_n) = f(x) \).