1) Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) such that \(|f(x) - f(y)| \leq (x - y)^2 \). Prove that \(f \) is constant.

2) Let \(f \) be a differentiable function defined in a neighborhood of \(x \). Assume that \(f''(x) \) exists. Use L'Hospital's rule to prove that
\[
\lim_{h \to 0} \frac{f(x + h) + f(x - h) - 2f(x)}{h^2} = f''(x).
\]

3) (Fixed Point Theorem.) Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) such that \(|f'(x)| \leq C \) for some \(0 \leq C < 1 \) and all \(x \). A number \(x \) is a fixed point for \(f \) if \(f(x) = x \). Prove that \(f \) cannot have two fixed points.

Let \(x_1 \) be any real number, and define a sequence by
\[
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
\]
Prove that the sequence \(\{x_n\} \) is Cauchy. (Hint: \(|x_{n+1} - x_n| \leq C|x_n - x_{n-1}| \).) Prove that the limit is a fixed point of \(f \).

4) (Concavity.) Let \(f : (\alpha, \beta) \rightarrow \mathbb{R} \) be twice differentiable function such that \(f'' \geq 0 \) on the interval. Let \(c \in (\alpha, \beta) \) and let \(g(x) \) be the linear function whose graph is the tangent line of the graph of \(f \) at \(c \) i.e. \(g(x) = f(c) + f'(c)(x - c) \). Prove that \(f(x) \geq g(x) \) for \(x \in (\alpha, \beta) \).

5) (Newton Method.) Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be twice differentiable function. Let \([a, b] \) be a closed interval such that \(f(a) < 0 \) and \(f(b) > 0 \), \(f'(x) \geq \delta > 0 \), and \(f''(x) \geq 0 \) for \(x \in [a, b] \). Prove that there is unique \(c \in (a, b) \) such that \(f(c) = 0 \). Define a sequence by \(x_1 = b \) and
\[
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
\]
Prove that the sequence is decreasing and bounded from below by \(c \), it has a limit. (Hint: interpret the sequence using the tangent line of the graph of \(f \) at \(x_n \), and use the previous exercise.) Prove that the limit is \(c \). Check that the conditions are satisfied for \(f(x) = x^2 - 2 \) and the interval \([1, 2]\). What is the limit of the sequence \(\{x_n\} \)? Compute \(x_n \) for \(n = 1, 2, 3, 4 \).

6) Consider the power series \(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots \), i.e. the sequence whose \(n \)-th term is \((-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} \). Compute the radius of convergence of this series. Use the theorem of Taylor to prove that \(\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots \) for every \(x \). Use this series to find a rational number that approximates \(\sin(1/2) \) with an error less than \(1/10^3 \).