MATH 3210-4, HW III DUE WEDNESDAY OCT 15

1) Let x_{n} be a sequence of positive real numbers such that $\lim _{n} x_{n}=x>0$. Prove that

- $\lim _{n} x_{n}^{2}=x^{2}$.
- $\lim _{n} \sqrt{x_{n}}=\sqrt{x}$.

2) Define a sequence by $s_{1}=1$ and $s_{n+1}=\sqrt{2+\sqrt{s_{n}}}$. Prove that $s_{n}<2$ for all n, and that s_{n} is an increasing sequence. Hint: prove that $s_{n-1}<s_{n}$ implies that $s_{n}<s_{n+1}$. Find the limit.
3) Let $X=\mathbb{Z}$ and $d(x, x)=0$ or $d(x, y)=\frac{1}{2^{n}}$, if $x \neq y$, where 2^{n} is the largest power of 2 dividing $x-y$. Prove that the following two series are Cauchy. One of them is convergent (find its sum) while the other not (explain).

- $\sum_{n=0}^{\infty} 2^{n}(-2)^{n}$

4) Let c_{n} be a sequence of positive numbers. Prove that

$$
\liminf _{n} \frac{c_{n+1}}{c_{n}} \leq \liminf _{n} \sqrt[n]{c_{n}}
$$

5) Let Y be a non-empty set. A function $d: Y \times Y \rightarrow[0, \infty)$ is called a quasi-distance if

- $d(x, x)=0$ for all $x \in Y$.
- $d(x, y)=d(y, x)$ for all $x, y \in Y$.
- $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in Y$.

In words, d is almost a distance function, however, $d(x, y)=0$ is allowed for different x and y. We say that x and y are equivalent if $d(x, y)=0$. Prove that this is an equivalence relation. Prove that, if x is equivalent to y then $d(x, z)=d(y, z)$ for all $z \in Y$.
6) Let (X, d) be a metric space. Let $x=\left\{x_{n}\right\}$ and $y=\left\{y_{n}\right\}$ be two Cauchy sequences. Prove that the sequence of distances $d\left(x_{n}, y_{n}\right)$ is a Cauchy sequence of real numbers.
7) Let (X, d) be a metric space. Let Y be the set of all Cauchy sequence. For any two Cauchy sequences $x=\left\{x_{n}\right\}$ and $y=\left\{y_{n}\right\}$ let

$$
d(x, y)=\lim _{n} d\left(x_{n}, y_{n}\right)
$$

Prove that d is a quasi-distance on Y. (So when we form equivalence classes as in 5), we get a new metric space, called the completion of X.)

