MATH 3210-4, HW II DUE MONDAY SEP 24

1) A complex number z is called algebraic if there exists integers $a_{0}, a_{1}, \ldots, a_{n}$, such that $a_{n} z^{n}+\cdots+a_{1} z+a_{0}=0$. Prove that the set of algebraic numbers is countable.
2) Prove that the following two (X, d) are metric spaces:

- $X=\mathbb{R}^{2}$ and $d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\max \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right)$.
- $X=\mathbb{Z}$ and $d(x, x)=0$ or $d(x, y)=\frac{1}{2^{n}}$, if $x \neq y$, where 2^{n} is the largest power of 2 dividing $x-y$.

3) Let (X, d) be a metric space. The "closed" ball centered at x and of radius $r>0$ is the set of $y \in X$ such that $d(x, y) \leq r$. Prove that the complement of the closed ball is an open set in X.
4) Let (X, d) be a metric space. Let $E \subset X$. A point $x \in E$ is interior if there exists $\epsilon>0$ such that $B(x, \epsilon) \subset E$. Let E° be the set of all interior points of E. Prove that E° is an open set. If $O \subset E$ is an open set, prove that $O \subset E^{\circ}$.
5) Let $K \subset \mathbb{R}$ be a set consisting of 0 and all $1 / n, n=1,2,3, \ldots$ Prove that K is compact directly using the definition, i.e. every open cover has a finite subcover.
6) Prove that convex sets in \mathbb{R}^{2} are connected, in the sense of definition 2.45. (The proof is very short if you do it the right way.)
