1) A complex number \(z \) is called algebraic if there exists integers \(a_0, a_1, \ldots, a_n \), such that
\[a_n z^n + \cdots + a_1 z + a_0 = 0. \]
Prove that the set of algebraic numbers is countable.

2) Prove that the following two \((X, d)\) are metric spaces:
 - \(X = \mathbb{R}^2 \) and \(d((x_1, x_2), (y_1, y_2)) = \max(|x_1 - y_1|, |x_2 - y_2|) \).
 - \(X = \mathbb{Z} \) and \(d(x, x) = 0 \) or \(d(x, y) = \frac{1}{2^n} \), if \(x \neq y \), where \(2^n \) is the largest power of 2 dividing \(x - y \).

3) Let \((X, d)\) be a metric space. The closed ball centered at \(x \) and of radius \(r > 0 \) is the set of \(y \in X \) such that \(d(x, y) \leq r \). Prove that the complement of the closed ball is an open set in \(X \).

4) Let \((X, d)\) be a metric space. Recall that the closure of \(E \subset X \) is \(\bar{E} \supseteq E \) obtained by adding limit points to \(E \). Since \(\bar{E} \) is larger than \(E \), it seems possible that \(\bar{E} \) has additional limit points, i.e. the closure does not give a closed set. Prove that
\[\bar{E} = \bigcap_{E \subseteq F, F = \text{closed}} F \]
i.e. the intersection is taken over all closed sets \(F \) containing \(E \). In particular, \(\bar{E} \) is closed, why?

Let \(X \) be a metric or, more generally, a topological space. A collection of open sets \(\{V_\alpha\} \) in \(X \) is called a base for \(X \) if for any open set \(V \) and \(x \in V \) there exists a \(V_\alpha \) in the collection such that \(V_\alpha \) is contained in \(V \) and it contains \(x \). In particular, any open set can be written as a union of a subcollection of \(\{V_\alpha\} \). For example, if \(X \) is a metric space, then the collection of all open balls is a base for \(X \), by the definition of open sets. Topological spaces with a countable base are called separable.

5) Assume that a metric space \(X \) contains a countable subset \(X_0 \) such that the closure of \(X_0 \) is \(X \). Prove that the collection of balls centered at \(x \in X_0 \) and rational radii is a countable base for \(X \).

6) Prove that convex sets in \(\mathbb{R}^2 \) are connected, in the sense of definition 2.45.