MATH 4400, SOLUTIONS TO THE MIDTERM EXAM

1) Find the last two digits of 3^{125} .

Solution: The question is: What is 3^{125} modulo 100? Since 3 is relatively prime to 100, we can apply the theorem of Lagrange to the group $(\mathbb{Z}/100\mathbb{Z})^{\times}$. The order of this group is $\varphi(100) = \varphi(4)\varphi(25) = 2 \cdot 20 = 40$. It follows that $3^{40} \equiv 1 \pmod{100}$ and

$$3^{125} = 3^{3 \cdot 40 + 5} \equiv 3^5 \equiv 43 \pmod{100}.$$

2) Solve the system of congruences $x \equiv 4 \pmod{55}$ and $x \equiv 11 \pmod{69}$.

Solution: The first equation implies $x = 4 + k \cdot 55$. Substituting into the second equation gives $k \cdot 55 = 7 \pmod{69}$. The inverse of 55 modulo 69 is -5. Thus k = -35.

3) Prove that an integer is divisible by 9 if and only if the sum of its digits is divisible by 9.

Solution: $10^k \equiv 1 \pmod{9}$ for all integers k. If a_m, \ldots, a_0 are decimal digits of an integer n, then

$$n = a_m 10^m + a_{m-1} 10^{m-1} \dots + a_0 \equiv a_m + a_{m-1} + \dots + a_0 \pmod{9}.$$

4) Let G be a group and g an element in G of order 9. What is the order of g^3 ? What is the order of g^2 ? Justify your answers.

Solution: Since the order of g is 9, g^9 , g^{18} , g^{27} , g^{36} , ... are all powers of g equal to the identity element in G. Thus the order of g^k is the smallest integer m such that km is a multiple of g. If g=1, then g=1, g=1 then g=1 then g=1 then g=1.

5) Let $S = \{p_1, \ldots, p_n\}$ be a set of odd primes. Let $m = 3p_1 \cdots p_n + 2$. Show that m is divisible by an odd prime $q \equiv 2 \pmod{3}$ not in the set S. Conclude that there are infinitely many primes congruent to 2 modulo 3.

Solution: Let $m=q_1\cdot q_2\cdots q_s$ be a factorization into primes. Since m is odd the primes factors q_i are also odd. If $q_i=p_j\in S$, then $q_i=p_j$ divides 2, a contradiction since $q_i=p_j$ is odd. Thus all q_i are not in S. Since m is not divisible by 3, $q_i\equiv 1\pmod 3$ or $q_i\equiv 2\pmod 3$ for every i. If $q_i\equiv 1\pmod 3$ for all i then $m\equiv 1\pmod 3$. But $m\equiv 2\pmod 3$, thus $q_i\equiv 2\pmod 3$ for at least one prime q_i .

6) Let G be a group. Assume that $a=a^{-1}$ for every a in G. Show that G is commutative, i.e. ab=ba for all a and b in G.

Solution: $ab = (ab)^{-1} = b^{-1}a^{-1} = ba$.