MATH 5320 - SOLUTIONS TO FIRST EXAM

1) (5 pts) Prove that $I = \{x + yi \in \mathbb{Z}[i] \mid x + y \equiv 0 \pmod{2} \}$ is an ideal in $\mathbb{Z}[i]$.

Solution: The fact that I is closed under addition is trivial. Let $x + yi \in I$ and $a + bi \in \mathbb{Z}[i]$. Then (a + bi)(x + yi) = (ax - by) + (ay + bx)i. As + = - modulo 2,

$$(ax - by) + (ay + bx) \equiv (ax + by) + (ay + bx) = (a + b)(x + y) \equiv (a + b) \cdot 0 \equiv 0 \pmod{2}.$$

2) (5 pts) Let $\varphi : \mathbb{Z}[x] \to \mathbb{C}$ be the map defined by $f(x) \mapsto f(i)$. Let I be the kernel of φ . Prove that I is principal, i.e. find a generator g(x) and prove that any element in I is a multiple of g(x).

Solution: Let $g(x) = x^2 + 1$, Then, since g(x) is monic,

$$f(x) = h(x)g(x) + ax + b$$

for some $h(x) \in \mathbb{Z}[x]$ and $a, b \in \mathbb{Z}$. If $f(x) \in I$ then, after substituting x = i in the above equation, we get 0 = ai + b. Since i and 1 are complex numbers linearly independent over \mathbb{R} , a = b = 0. Thus f(x) is a multiple of g(x).

3) (5 pts) Let F be a field. Prove that the ring F[x]/(x(1-x)) is isomorphic to $F \times F$.

First solution: Let $\varphi : F[x] \to F \times F$ be the map $\varphi(f(x)) = (f(0), f(1))$. This is a homomorphism. It is surjective, since $\varphi(a(1-x)+bx) = (a,b)$. Let f(x) be in the kernel of φ . Write

$$f(x) = x(1-x)q(x) + ax + b$$

Then f(0) = f(1) = 0 imply that b = 0 and a + b = 0, i.e. the kernel of φ consists of multiples of x(1-x). Thus φ induces an isomorphism of F[x]/(x(1-x)) and $F \times F$ by the first isomorphism theorem.

Second solution: Write R = F[x]/(x(1-x)). Note that x(1-x) = 0 is equivalent to $x = x^2$. Hence x and 1-x are non-trivial idempotents in R, and $R = A \times B$ where $A = (x)/(x(1-x)) \cong F[x]/(1-x) \cong F$ and $B = (1-x)/(x(1-x)) \cong F[x]/(x) \cong F$.

4) (5 pts) Let F be a field. Prove that the ring $F[x]/(x^2)$ has no non-trivial idempotents.

Solution: Any element in $F[x]/(x^2)$ can be written, uniquely, as a + bx for $a, b \in F$. Thus, if we write e = a + bx, then $e^2 = a^2 + 2abx$, and $e^2 = e$ implies $a = a^2$ and b = 2ba. These two equations have two solutions: (a, b) = (0, 0) or (1, 0), i.e. e = 0 or 1.

Second solution: Write $R = F[x]/(x^2)$. Note that R has only one non-trivial ideal that corresponds to $(x) \subseteq F[x]$. If R has non-trivial idempotents, then $R \cong A \times B$ and R has two non-trivial ideals: $0 \times B$ and $A \times 0$. This is a contradiction.

5)(5 pts) Determine the ring $\mathbb{Z}[x]/(2x+1,10)$.

Solution: The idea is to divide 2x+1 by 10. This can be done provided we take an appropriate multiple of 2x+1:

$$5(2x+1) = 10x + 5.$$

Thus $5 \in (2x+1,10)$ and the generator 10 can be replaced by 5. It follows that

$$\mathbb{Z}[x]/(2x+1,10) = \mathbb{Z}[x]/(2x+1,5) \cong \mathbb{F}_5[x]/(2x+1) \cong \mathbb{F}_5$$

where the last isomorphism is obtained by evaluating polynomials at 2, the root of 2x+1 in \mathbb{F}_5 .