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CHAPTER 1

Euclidean Algorithm

1. Euclidean Algorithm

Euclid was a Greek mathematician who lived in Alexandria around 300
B.C. He devised a clever and fast algorithm to find the greatest common
divisor of two integers. In modern language, the Euclidean Algorithm is
the division with remainder. Recall that dividing two positive integers a, b
means finding a positive integer q, called a quotient, such that

a = qb+ r

with 0 ≤ r < b. The number r is a remainder of the division. If r = 0 then
we say that b divides a, and write b|a. For example,

3 | 6 whereas 4 - 6.

Dividing two integers is probably the most difficult of the four standard
binary operations. However, some of the most fundamental properties, such
as the uniqueness of factorization, are based on the Euclidean Algorithm.

But how is this related to finding the Greatest Common Divisor (or
simply gcd) of two integers m and n? If factorizations of m and n into prime
factors are known, then it is easy to figure out what the gcd is. Consider,
for example, m = 756 and n = 360. Then

756 = 22 · 33 · 7 and 360 = 23 · 32 · 5.
We see that 2 and 3 are the only primes appearing in factorizations of
both numbers. Moreover, 22 and 32 are the greatest powers of 2 and 3,
respectively, which divide both 756 and 360. It follows that

gcd(756, 360) = 22 · 32 = 36.

There are two issues here, however. Firstly, we have secretly assumed the
uniqueness of factorization. The second issue, also very important, is that
factoring into primes is a very difficult process, in general. A much better
way was discovered by Euclid. Assume, for example, that we want to find
the greatest common divisor of 60 and 22. Subtract 60 − 22 = 38. Notice
that any number dividing 60 and 22 also divides 22 and 38. Conversely,
any number that divides 22 and 38 also divides 22 + 38 = 60 and 22. Thus,
instead of looking for common divisors of 60 and 22, we can look at common
divisors of 22 and 38 instead. Since the later pair of numbers is smaller, the

5



6 1. EUCLIDEAN ALGORITHM

problem of finding the greatest common divisor of 60 and 22 has just become
easier, and we have accomplished that without ever dividing or multiplying
two numbers. In fact, we can do even better. Instead of subtracting 22 from
60 once, we can subtract it twice, to get 60− 2× 22 = 16. Thus we get that

gcd(60, 22) = gcd(22, 16).

Of course, we do not stop here. Since 22− 16 = 6, it follows that

gcd(22, 16) = gcd(16, 6)

and so on. At every step we replace a pair (a, b) by a pair (b, r) where r is
the remainder of the division of a by b. The whole division process in this
case is given here:

60 = 2 · 22 + 16

22 = 1 · 16 + 6

16 = 2 · 6 + 4

6 = 1 · 4 + 2

4 = 2 · 2 + 0

This shows that

gcd(60, 22) = gcd(22, 16) = · · · = gcd(4, 2) = 2.

The last statement is obvious since 2 divides 4. In general, starting with a
pair of numbers a and b we use the division algorithm to generate a sequence
of numbers (b > r1 > r2 > . . .) as follows. First, we divide a by b:

a = q1b+ r1,

then divide b by r1 , and so on...

b = q2r1 + r2
r1 = q3r2 + r3

...
rn−2 = qnrn−1 + rn
rn−1 = qn+1rn + 0.

This process stops when the remainder is 0. Since b > r1 > r2 . . . it stops
in less than b steps. We claim that the last non-zero remainder rn is equal
to the greatest common divisor of a and b. In order to verify this, notice
that the first equation a = qb+ r1 implies that any common divisor of b and
r1 also divides a. Likewise, if we rewrite the first equation as a − qb = r1,
it is clear that any common divisor of a and b also divides r1. This shows
that gcd(a, b) = gcd(b, r1). Arguing in this fashion, we see that

gcd(a, b) = gcd(b, r1) = . . . = gcd(rn−1, rn) = rn
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where, of course, the last statement is obvious since rn divides rn−1. We
can summarize what we have discovered:

Euclidean Algorithm gives an effective way to compute the greatest com-
mon divisor of two integers. Moreover, the algorithm does not rely on the
uniqueness of factorization.

The Euclidean Algorithm can be viewed as a special case of the Contin-
ued Fraction Algorithm. We need some notation before proceeding to the
definition of the algorithm. If α is a real number then let [α] denote the
greatest integer less than or equal to α. For example, since

√
2 = 1.4 . . . the

greatest integer less than or equal to
√

2 is 1:

[
√

2] = 1.

Note that [α] = α if α is an integer. The Continued Fraction Algorithm is
defined as follows:

(1) Let α > 1, and put β = α− [α].
(2) If β = 0 stop, else put α1 = 1/β and go to (1).

In order to illustrate the relation between the two algorithms, let us
work out the case when α = 60/22. Then the Continued Fraction Algorithm
generates the following numerical data.

i [αi] βi αi+1

0 2 16/22 22/16
1 1 6/16 16/6
2 2 4/6 6/4
3 1 2/4 4/2
4 2 0 STOP

Here, of course, we put α0 = α and β0 = β. As it can be seen from the
table, the Continued Fraction Algorithm generates the same numbers as
the Euclidean Algorithm starting with the pair (60, 22). More precisely, if
α = a/b and b > r1 > r2 . . . are non-negative integers generated by the
Euclidean Algorithm applied to the pair (a, b), then

β =
r1
b
, β1 =

r2
r1
, β2 =

r3
r2
. . .

and

[α] = q1, [α1] = q2, [α2] = q3 . . .

Since rn+1 = 0 for some n, βn = 0 and the algorithm stops for every rational
number (fraction). The name (continued fraction) comes from the fact the
process can be recorded as

60

22
= 2 +

16

22
= 2 +

1

1 + 6
22

= . . .
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. . . = 2 +
1

1 + 1
2+ 1

1+1
2

.

The continued fraction, in turn, gives a series of - so called - partial conver-
gents:

2, 2 +
1

1
, 2 +

1

1 + 1
2

, 2 +
1

1 + 1
2+ 1

1

and 2 +
1

1 + 1
2+ 1

1+1
2

.

An easy calculation gives that these five partial convergents are equal to,
respectively,

2, 3,
8

3
,
11

4
and

30

11
=

60

22
.

A rather different phenomenon occurs when we apply the algorithm to
α =
√

2. Then going through the loop for the first time yields

(1) α =
√

2, β =
√

2− [
√

2] =
√

2− 1.
(2)

α1 =
1

β
=

1√
2− 1

=
√

2 + 1.

Going through the loop for the second time yields

(1) α1 =
√

2 + 1, β1 =
√

2 + 1− [
√

2 + 1] =
√

2− 1.
(2)

α2 =
1

β1
=

1√
2− 1

=
√

2 + 1.

Thus the second output α2 =
√

2 + 1 is the same as the first output of the
algorithm. Of course, the third output will be the same, and so on:

α1 = α2 = α3 = . . . =
√

2 + 1.

We see that the Continued Fraction Algorithm is stuck in the loop in this
case. In particular, this shows that

√
2 is not a fraction. We can write

√
2

as a continued fraction

√
2 = 1 +

1

2 + 1
2+ 1

2+ 1

...

.

This is a rather confusing expression, however. A proper way to view this
expression is in terms of partial convergents. A partial convergent is obtained
by stopping the continued fraction expression at a point. For example, the
third convergent for

√
2 would be

√
2 = 1 +

1

2 + 1
2

=
7

5
.
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We mention, without a proof, that the partial convergents form a sequence
of rational approximations of

√
2. For example, the first four convergents

for
√

2 are

1,
3

2
= 1.5,

7

5
= 1.4,

17

12
≈ 1.41 . . .

Exercises

1) Use the Euclidean Algorithm to find the greatest common divisor of
a) 1084 and 412.
b) 1979 and 531.
c) 305 and 185.

2) Use calculations from the previous exercise to express in a continued
fraction form:

a)
1084

412
.

b)
1979

531
.

c)
305

185
.

3) If a | b and b | c show that a | c.
4) Use the Continued Fraction Algorithm to show that

√
3 is not rational.

5) Compute the fourth convergent of the continued fraction expansion of√
3. Note how well it approximates

√
3.

6) Use the Continued Fraction Algorithm to show that
√

7 is not rational.

7) Compute the fourth convergent of the continued fraction expansion of√
7. Note how well it approximates

√
7.

8) Find the number α whose continued fraction expansion is

α = 1 +
1

1 + 1
1+ 1

1+ 1

...

.

2. Fundamental Theorem of Arithmetic

Pick three non-zero integers a, b and c. A purpose of this section is to
find integer solutions of the following equation:

ax+ by = c.
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This is crucial to proving uniqueness of factorization, which will be done in
the next section.

We shall first derive necessary conditions. Consider, for example, the
equation

9x+ 12y = 5.

It does not have any integer solutions because 3 divides the left hand side
(since 3 divides 9 and 12) but 3 does not divide the right hand side, which
is 5. Thus, the equation ax + by = c does not have solutions unless the
greatest common divisor of a and b divides c. This is a necessary condition.
We shall see that this is also a sufficient solution. For example, if we replace
5 by 3 in the above equation, then

9x+ 12y = 3

does have a solution, since 9(−1) + 12(1) = 3. Before we state the main
result of this section we make the following reduction. Let d denote the
greatest common divisor of a and b. We assume now that d divides c, so we
can write c = kd for some integer k. If (x0, y0) is a solution of ax+ by = d,
hence

ax0 + by0 = d

then, after multiplying this equation by k, we have

a(kx0) + b(ky0) = kd = c,

making (kx0, ky0) a solution of the original equation ax+ by = c. Thus we
have reduced to solving:

ax+ by = gcd(a, b).

Theorem 1. (Fundamental Theorem of Arithmetic) If a,b are two pos-
itive integers, then there exist integers x,y such that ax+ by = gcd(a, b).

Proof. The proof uses the idea behind the Euclidean Algorithm. The
greatest common divisor does not change if we replace the pair (a, b) by the
pair of smaller numbers (a− b, a). If we can solve the equaltion

(a− b)x+ by = gcd(a− b, b)

then, by rewriting this equation and using gcd(a − b, b) = gcd(a, b), we get
a solution to the original equation

ax+ b(y − x) = gcd(a, b).

We can keep reducing to a smaller pair as long as a 6= b. If a = b, then
gcd(a, b) = gcd(a, a) = a and the equation takes form ax + by = a. But in
this case there is a trivial solution, x = 1 and y = 0. �
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We shall make this process very explicit by applying the Euclidean Al-
gorithm to a and b. Assume, for simplicity, that the algorithm terminates in
three steps. Then r3 is the last non-zero remainder and equal to gcd(a, b).

a = q1b+ r1
b = q2r1 + r2
r1 = q3r2 + r3.

We can consider this as a system of three linear equations in five variables:
a, b r1, r2 and r3. We shall reduce this system to one equation in three
variables a, b and r3 as follows. First, rewrite the system as

r1 = a− q1b
r2 = b− q2r1
r3 = r1 − q3r2.

Next, eliminate r2 and r1 using the second and the first equation, respec-
tively. More precisely, first substitute r2 = b − q2r1 into the last equation,
which then becomes

r3 = −q3b+ (1 + q2q3)r1.

Next, substitute r1 = a− q1b to obtain

r3 = (1 + q2q3)a− (q1 + q1q2q3 + q3)b.

Since r3 = gcd(a, b), we see that (x, y) = (1 + q2q3,−(q1 + q1q2q3 + q3)) is a
solution of the equation ax+ by = gcd(a, b).

For example, if a = 123 and b = 36, then the Euclidean Algorithm gives
a sequence of equations

a = 3 · b+ 15
36 = 2 · 15 + 6
15 = 2 · 6 + 3

6 = 2 · 3 + 0.

In particular, gcd(123, 36) = 3. As in the proof of Theorem 1, we rewrite
these equations as

15 = a− 3 · b
6 = b− 2 · 15
3 = 15− 2 · 6

and, after two substitutions, the last equation becomes 3 = 5a − 17b from
which we identify a solution:

(x, y) = (5,−17).

The substitutions, however, are often rather cumbersome. In fact, this pro-
cess could be made easier using the continued fraction expansion

123

36
= 3 +

1

2 + 1
2+ 1

2

.
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The partial convergents are

2

1
,
7

2
,
17

5
and

41

12
=

123

36
.

The convergent before the last one, in this case 17
5 , gives a solution of the

equation 123x+36y = 3. As this example illustrates, the Continued Fraction
Algorithm gives a solution (x0, y0) of the equation ax+by = d (d = gcd(a, b))
such that

|x0| ≤
b

d
and |y0| ≤

a

d
.

We now address the question of finding all solutions. For example, if
x0, y0 is a solution of ax+ by = d, and ` is any integer, then

a(x0 + `b) + b(y0 − `a) = ax0 + by0 = d

thus (x0 − `b, y0 + `a) is another solution. In fact we have the following:

Theorem 2. If x0, y0 is a solution of ax+ by = d, where d = gcd(a, b),
then every solution of this equation is of the form:

x = x0 + k
b

d
, y = y0 − k

a

d
where k is any integer.

Proof. The proof is a simple manipulation of equations. Let (x1, y1)
and (x2, y2) be two solutions meaning,{

ax1 + by1 = d

ax2 + by2 = d.

Then, if we multiply the first equation by y2 and x2, and the second equation
by y1 and x1 we get two columns of equations

ax1y2 + by1y2 = dy2 ax1x2 + by1x2 = dx2

ax2y1 + by2y1 = dy1 ax1x2 + by2x1 = dx1

and, after subtracting the second equation from the first in both columns,
we get two equations

a(x1y2 − x2y1) = d(y2 − y1) b(x1y2 − x2y1) = d(x1 − x2).
Since d divides a and b, we can divide both equations by d, hence

b

d
(x1y2 − x2y1) = x1 − x2
a

d
(x1y2 − x2y1) = y2 − y1

and this is the same as

x1 = x2 + k
b

d

y1 = y2 − k
a

d
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where k = x1y2 − x2y1. This proves the theorem. �

Example: If 2x + y = 1 then one solution is (1,−1). All solutions form a
sequence (see the figure)

. . . (−1, 3), (0, 1), (1,−1), (2,−3), . . .

-

6s
s

s
s

Exercises

1) Find all integer solutions of 13853x+ 6951y = gcd(13853, 6951).

2) Find all integer solutions of 15750x+ 9150y = gcd(15750, 9150).

3) Show that 427x+ 259y = 13 has no integer solutions.

Use the Fundamental Theorem of Arithmetic in the following two exer-
cises:

4) Let a and b be two integers. Show that any common divisor of a and b
divides the greatest common divisor of a and b.

5) Let a and b be two relatively prime integers (gcd(a, b) = 1). Show that if
a and b divide c, then ab divides c.

6) Show that

gcd(ad, bd) = gcd(a, b)d.

7) Let a and b be two positive integers. The lowest common multiple of a
and b, denoted by lcm(a, b), is the smallest positive integer divisible by both
a and b. Show that lcm(a, b) divides any common multiple of a and b. Hint:
If m is a common multiple, write

m = q · lcm(a, b) + r

with 0 ≤ r < lcm(a, b).

8) Show that

lcm(a, b) gcd(a, b) = ab.
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Hint: Do the case gcd(a, b) = 1 first.

9) Use the Euclidean Algorithm and the formula in the exercise 8) to find
a) lcm(13853, 6951)
b) lcm(15750, 9150).

3. Uniqueness of Factorization

A positive integer p > 1 is called prime if it is divisible only by 1 and
itself. Positive integers greater than 1 which are not primes are called com-
posite. For example, 5 is a prime, while 12 = 3 · 4 is a composite number.
We note that 1 is considered neither a prime nor a composite integer. Every
positive integer greater than 1 can be factored into prime factors. This is
not entirely obvious, if you think about it. The argument is based on the
following:

Well ordered axiom: Every non-empty subset S of positive integers has a
smallest element.

Thus, if there are positive integers that cannot be factored into primes,
then all such integers form a non empty set S. By the axiom there exists
a smallest element n in S. Now n cannot be a prime, since prime numbers
can be factored into primes (obviously!). Thus n = a · b for two integers less
than n. Since a and b are less than n they do not belong to S and, therefore,
can be factored into primes. It follows that n = a · b can also be factored
into primes. This is a contradiction. Thus S must be empty.

In practice this argument can be illustrated as follows. If we can factor
into primes all integers less than 12 then we can factor 12 as well. Indeed,
12 is not a prime since 12 = 3 · 4. Since 3 is a prime and 4 = 22 we get that
12 = 22 · 3.

We can find (some) prime numbers using a classical method: The Sieve
of Eratosthenes. First, we list integers as many as we can or wish, starting
with 2. Then we remove all numbers greater than 2 and divisible by 2, for
they are obviously not prime. The first remaining integer is 3. Thus it must
be a prime. Then we remove all integers greater than 3 and divisible by 3,
and so on. What remains, in the end, are prime numbers. For numbers up
to 19 this process can be illustrated by the following table:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
2 3 5 7 9 11 13 15 17 19
2 3 5 7 11 13 17 19

The first row contains all numbers from 2 to 19. The second row has mul-
tiples of 2, except 2, removed. The third row has all multiples of 3, except
3, removed. The fourth row, not pictured here, would have all multiples of
5, except 5, removed and so on. In the end we can conclude that 2, 3, 5, 7,
11, 13, 17 and 19 are primes less than 20.
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One of the most important results in number theory is the uniqueness of
factorization into primes. This is not at all obvious. Take, for example, 42.
We can write 42 = 2·21 and, since 21 = 3·7, we have 42 = 2·3·7. This process
can not be continued since all the factors 2, 3 and 7 are prime. However,
factoring of 42 could have been achieved by first writing 42 = 3 ·14 and then
using 14 = 2 · 7. In both cases we arrive to the same answer 42 = 2 · 3 · 7,
up to a permutation of factors.

Theorem 3. Every positive integer can be uniquely, up to ordering of
factors, factored as a product of primes.

For example, 6 = 2 · 3 and 6 = 3 · 2 are the only possible prime factor-
izations of 6. Proof of uniqueness of factorization is based on the following
statement.

Lemma 4. Let p be prime, and a and b be two integers such that p divides
ab. Then p divides a or b. For example, 3 divides 36 = 4 · 9 and 3 divides
9, one of the factors.

Proof. To prove the lemma, we need to show that if p does not divide
one of the factors, say a, then p must divide the other factor b. To that end,
if p does not divide a then the only common divisor of p and a is 1. Thus,
by the fundamental theorem of arithmetic, there exist integers x and y such
that

ax+ py = 1.

Multiplying this equation by b we have abx+ pby = b. Since p divides ab, it
divides abx+ pby and, therefore, b. �

The statement can be generalized to arbitrary number of factors. If
p|a1 · a2 · . . . · ap then p|ai for some i s.t. 1 ≤ i ≤ r. Indeed, either p|a1 or
p|(a2 · . . . · ar). In the latter case either p|a2 or p|(a3 · . . . · ar), and so on ...

We are now ready to show uniqueness of factorization. Let n be a positive
integer and n = p1, . . . , pr and n = q1, . . . , qs be two factorizations into
primes. Then

p1 · . . . · pr = q1 · . . . · qs.
So, p1|q1 · . . . · qs and by Lemma p1|qi (for some i s.t. 1 ≤ i ≤ s) and since qi
is a prime, p1 = qi. After rearranging qi’s we can assume that p1 = q1, and
after canceling p1 = q1 on both sides we get

p2 · . . . · pr = q2 · . . . · qs.
The same argument gives p2 = q2, p3 = q3 and so on. The theorem is proved.

Now that we have shown that every positive integer can be factored
uniquely into primes, a natural question is how to factor a given integer into
primes n? For example, if n = p · q is a product of two large, unfamiliar
primes, there is no easy way to factor n, and this fact lies at the heart of
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many modern cryptography schemes. However, if the primes p and q are
relatively close to each other, there is a neat trick which is based on the
following identity:

n =

(
p+ q

2

)2

−
(
p− q

2

)2

.

As an example we shall factor 826277, which is a product of two close primes,
which means that p− q is small. Since p and q are odd, the difference p− q
is even. Thus the first possibility is p− q = 2, which implies that(

p+ q

2

)2

= 826277 + 12 = 826278.

Since 826278 is not a square, our guess p − q = 2 is incorrect. So let’s try
the next possibility p− q = 4. Then(

p+ q

2

)2

= 826277 + 22 = 826281.

Since 826281 = 9092 we deduce that p + q = 1818 which, combined with
p− q = 4, gives that p = 911 and q = 907 or

826277 = 911 · 907.

Exercises

1) Use the Sieve of Erathostenes to determine all primes less than 100.

2) Let a and b two positive integers such that a+b is a prime number. Prove
that the greatest common divisor of a and b is 1.

3) The numbers 3992003 and 1340939 are each products of two close primes.
Find the primes.

4. Efficiency of the Euclidean Algorithm

The goal of this section is to understand in how many steps the Euclidean
Algorithm terminates. An answer to this problem introduces, somewhat
surprisingly, Fibonacci numbers. We start with two examples. In the first,
we take a = 144 and b = 71. Then

144 = 2 · 71 + 2
71 = 35 · 2 + 1
2 = 2 · 1 + 0,



4. EFFICIENCY OF THE EUCLIDEAN ALGORITHM 17

and the algorithm terminates in 3 steps. On the other had, if we take
a = 144, b = 89, then the Euclidean Algorithm has 10 steps:

144 = 1 · 89 + 55
89 = 1 · 55 + 34
55 = 1 · 34 + 21
34 = 1 · 21 + 13
21 = 1 · 13 + 8
13 = 1 · 8 + 5
8 = 1 · 5 + 3
5 = 1 · 3 + 2
3 = 1 · 2 + 1
2 = 2 · 1 + 0.

The main result of this section is that the Euclidean Algorithm termi-
nates in the number of steps which is not greater than 5 times the number
of digits of b. If we take this as granted, we see that the second example
illustrates a worst case scenario since b = 89 has 2 digits.

We start by expressing the number of digits of a number b in terms of
log10 b. To that end, note that every number between 10k and 10k+1 (but
not equal to 10k+1) has precisely k+1 digits. In particular, since b = 10log10 b

and

10[log10 b] ≤ b < 10[log10 b]+1

the number of digits of b is

[log10 b] + 1 ≈ log10 b.

Proposition 5. Let a and b be two positive integers such that a ≥ b.
The Euclidean Algorithm for the pair (a, b) terminates in the number of steps
not greater than 5 times the number of digits of b.

Proof. Assume that the Euclidean algorithm terminates after n steps.
Let

b = rn > rn−1 > · · · > r1 > r0 = 0

be all remainders, which we have indexed in the opposite order than in the
previous occasions. In particular, we have

a = qn−1b+ rn−1
b = qn−2rn−1 + rn−2

...
r3 = q1r2 + r1
r2 = q0r1.

Since qi ≥ 1 the sequence of equalities can be replaced by a sequence of
inequalities

ri+1 ≥ ri + ri−1.
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Next, note that r1 ≥ 1 and, r2 ≥ 2, since r2 > r1. The inequalities imply
that

r3 ≥ r2 + r1 ≥ 2 + 1 = 3

r4 ≥ r3 + r2 ≥ 3 + 2 = 5

r5 ≥ r4 + r3 ≥ 5 + 3 = 8.

The numbers 1, 2, 3, 5, 8 . . . belong to the the Fibonacci sequence Fi. This
sequence is defined by F0 = 1, F1 = 1 and the recursive relation

Fi+1 = Fi + Fi−1.

The first 12 terms of the Fibonacci Sequence are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 and 144

which have already appeared in the second example above. In particular, it
follows that

ri ≥ Fi
for all i. Thus b ≥ Fn and the number of digits of b is greater than or equal
to the number of digits of Fn.

In order to estimate the number of digits of Fn we need a closed formula
for Fn, which is

Fn =
(1 +

√
5)n+1 − (1−

√
5)n+1

2n+1
√

5
.

(A derivation of this formula is given as an exercise at the end of this section.)
Since (1−

√
5)/2 ≈ −0.6 it follows that(

1−
√

5

2

)n+1

→ 0

as n → ∞. Thus the second term in the formula for Fn can be ignored for
purposes of estimating the number of digits of Fn. Therefore, using

Fn ≈
(1 +

√
5)n+1

2n+1
√

5
,

we obtain that

log10(Fn) ≈ (n+ 1) log10

(
1 +
√

5

2

)
− log10(

√
5) ≈ n

5
,

where we used that log10

(
1+
√
5

2

)
≈ 1/5. We have shown that the number

of digits of b is greater than or equal to the number of steps (n) divided by
5 or, equivalently, the number of steps is not more than 5 times the number
of digits of b. The proposition is proved. �

Exercises
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1) Let

fn =
(1 +

√
5)n − (1−

√
5)n

2n
√

5
.

Show that fn+2 = fn+1 + fn. In words, show that fn satisfy the same
recursion relation as the Fibonacci numbers. What else do you need to
check in order to verify that fn are indeed the Fibonacci numbers?

The purpose of the next two exercises is to derive a weaker estimate
on the efficiency of the Euclidean Algorithm without using the Fibonacci
numbers.

2) Observe that the remainders in the Euclidean Algorithm satisfy the in-
equality

ri+1 ≥ ri + ri−1 > 2ri−1.

Use this to show that the number of steps in the Euclidean Algorithm is less
than or equal to 2 log2(b).

3) Show that 2 log2(b) is greater than six times the number of digits of b.
Hint: notice that log2 10 > 3.





CHAPTER 2

Groups and Arithmetic

1. Groups

Addition and multiplication of numbers are examples of binary oper-
ations in mathematics. More generally, binary operation on a set G is a
procedure that, from any two elements a and b in G, produces an element
in G denoted by a · b. The set G is a group if the binary operation · satisfies
the following properties (axioms):

(1) (associativity) For any three elements a, b and c in G

a · (b · c) = (a · b) · c.

(2) (existence of identity) There exists an element e in G, called iden-
tity, such that for all a in G

a · e = e · a = a.

(3) (existence of inverse) For every a in G there exists b, called an
inverse of a, such that

a · b = b · a = e.

The inverse of a is usually denoted by a−1.

The group is commutative if a ·b = b ·a for all pairs of elements in G. An
example of a finite non-commutative group will be given in the next section.
As a first example, consider the set of integers

Z = {. . . ,−2,−2, 0, 1, 2, . . .},

and addition as the binary operation. As it is customary, we will use use
+ and not · to denote this binary operation. The addition of integers is
associative

a+ (b+ c) = (a+ b) + c

so the first axiom is satisfied. Next, we need to check that there exists an
integer e such that a + e = e + a = a for every integer a. Clearly e = 0
satisfies this axiom. Finally, −a is an inverse of a, for any integer a. Thus the
set of integers is a group for addition. The same holds for rational numbers
Q, real numbers R and complex numbers C. Each is a group for the usual
addition of numbers with 0 as identity.

21
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As the next example, consider Q×, the set of non-zero rational numbers,
and multiplication as the operation. Again, as you well know, the multipli-
cation is associative, 1 is an identity and any non-zero fraction n/m has an
inverse. The inverse is, of course, the fraction m/n. It follows that rational
numbers form a group for multiplication with 1 as identity. The same holds
for non-zero real numbers R× and non-zero complex numbers C×.

Since a group is not commutative in general, we need to be careful with
certain “common” formulas. For example, one may be tempted to write
(a · b)−1 = a−1 · b−1, but this is not right. In fact, the correct version is

(a · b)−1 = b−1 · a−1,
in words, the inverse of a product is the product of inverses, but in the
reverse order. Indeed,

(a · b) · (b−1 · a−1) = a · (b · b−1) · a−1 = a · a−1 = e.

In fact, the formula (a · b)−1 = b−1 · a−1 is more intuitive. For example,
if you build a brick wall, you start with the first row, then second and so
on, from the bottom to the top. But to take down the wall you go in the
opposite order, form the top to the bottom. Thus, we have the following
general formula:

(a1 · a2 · . . . · an)−1 = a−1n · . . . · a−12 · a
−1
1 .

An important property of any group law is the cancellation property.
More precisely,

Proposition 6. Let G be a group and a, x and y three elements of G.
If a · x = a · y then x = y.

Proof. Let b be the inverse of a. Then a · x = a · y implies that

b · (a · x) = b · (a · y).

Using associativity this can be rewritten as

(b · a) · x = (b · a) · y.
Since b · a = e, the identity element in the group, the last equation reduces
to x = y, as claimed. �

As an example where the cancellation property does not hold, consider
the set of all 2 × 2 matrices with integer coefficients. The matrix multipli-
cation is defined by(

a b
c d

)(
a′ b′

c′ d′

)
=

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
.

It is associative, and (
1 0
0 1

)
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is an identity, but the cancellation property does not hold as the following
example shows. First, a simple calculation shows that(

0 1
0 0

)(
0 2
0 0

)
=

(
0 0
0 0

)
and (

0 1
0 0

)(
3 0
0 0

)
=

(
0 0
0 0

)
.

This implies that(
0 1
0 0

)(
0 2
0 0

)
=

(
0 1
0 0

)(
3 0
0 0

)
.

However, we cannot cancel (
0 1
0 0

)
since (

0 2
0 0

)
6=
(

3 0
0 0

)
.

In any group we can define integer powers gn of any element g. If n is
positive, then

gn = g · . . . · g︸ ︷︷ ︸
n−times

.

Next, g0 = e and finally, still assuming that n is positive, we define

g−n = g−1 · . . . · g−1︸ ︷︷ ︸
n−times

.

The powers satisfy the usual elementary-school rules:

gn · gm = gn+m

and

(gn)m = gnm.

A nonempty subset H of a group G is a subgroup of G if the following
two axioms hold:

(1) The product of any two elements in H is contained in H.
(2) The inverse of any element in H is also contained in H.

It follows from the axioms that the identity element e of G is contained in
H. Indeed, pick an element h in H. Then h−1 is in H, by the second axiom,
and e = h · h−1 is in H, by the first axiom. Note that H is also a group,
with respect to the same binary operation.

Examples:

(1) Let G be a group and e its identity element. Then H = {e} is a
subgroup. This group is called the trivial subgroup of G.
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(2) Let G = Z, the group of integers with respect to the usual addition.
Let H be the subset of all even integers. This is a subgroup of G,
since the sum of two even integers is even, and the inverse of an
even integer is even.

(3) Let G = Z, the group of integers with respect to the usual addition.
Let H be the subset of all positive integers. This subset is closed
under addition, but not under taking inverse. Thus H is not a
subgroup.

Here is a very general and important example of a subgroup. Let G be
a group and g an element in G. Let 〈g〉 be the set of all integral powers of
g:

〈g〉 = {. . . , g−2, g−1, e, g, g2, . . .}.
Note that 〈g〉 is a subgroup. Indeed, since gn · gm = gn+m the first axiom
holds, and since (gn)−1 = g−n the second axiom holds.

If G = 〈g〉 for some element g in G, that is, if any element in G is a
power of g, we say that G is a cyclic group.

Exercises

1) Let G be a group and e and e′ two identity elements. Show that e = e′.
Hint: consider e · e′ and calculate it using first that e is an identity and then
using that e′ is an identity.

2) Let G be a group and a an element in G. Show that the inverse of a is
unique.

3) Let G be a group with identity e and such that a2 = e for every element
a in G. Show that G is commutative, a · b = b · a for every two elements a
and b in G. Hint: consider (a · b)2.
4) Fix n, a positive integer. Let

nZ = {. . .− 2n,−n, 0, n, 2n, . . .}

be the set of all integer multiples of n. Show that nZ is a subgroup of Z
with respect to addition as the binary operation.

5) Let H be a non trivial subgroup of Z. Show that H = nZ for some
positive integer n. Hint: n is the smallest positive integer in H.

Let SL2(Z) be the set of all integer valued 2×2 matrices of determinant
one. The purpose of the following six exercises is to show that SL2(Z) is
a group with respect to the (usual) multiplication of matrices. The group
SL2(Z) is easily the most interesting, important and difficult group in math-
ematics.

6) Before we proceed with checking the group axioms, you first need to
verify that SL2(Z) is closed with respect to multiplication. Show that the
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product of any two elements A and B in SL2(Z) is also in SL2(Z). (We
need to verify that the result of multiplication is back in the proposed group
SL2(Z), otherwise the question - whether SL2(Z) is a group - does not make
any sense.)

7) Show that the matrix multiplication is associative. That is, show that for
any three matrices A,B and C in SL2(Z) we have

A(BC) = (AB)C.

8) Show that the matrix (
1 0
0 1

)
is an identity for the multiplication.

9) Show that the inverse is given by the formula:(
a b
c d

)−1
=

(
d −b
−c a

)
.

10) Compute (and verify) the inverse of(
3 4
2 3

)
.

11) Show that (AB)−1 6= A−1B−1 in SL2(Z) where

A =

(
1 1
0 1

)
and B =

(
0 1
−1 0

)
.

2. Congruences

Fix a positive integer n. We say that two integers a and b are congruent
modulo n if the difference a− b is divisible by n. This is classically denoted
by

a ≡ b (mod n).

For example, if n = 12, then 14 is congruent to 2 modulo 12, since the
difference of 14 and 2 is divisible by 12. We write

14 ≡ 2 (mod 12).

We can add and multiply integers modulo n. For example, the usual addition
of integers gives 10 + 4 = 14. Since 14 ≡ 2 (mod 12) we say that adding 10
and 4 modulo 12 gives 2. We write this as

10 + 4 ≡ 2 (mod 12).
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Similarly, the usual multiplication of integers gives 3 · 7 = 21. Since 21 ≡ 9
(mod 12) we say that multiplying 3 and 7 modulo 12 gives 9. We write this
as

3 · 7 ≡ 9 (mod 12).

This may come as a surprise, but modular arithmetic is used in everyday
life: The addition modulo 12 is simply the clock arithmetic. For example, if
it is 10 o’clock now, in 4 hours it will be 2 o’clock.

Modular addition is well defined in the sense that the result of addition
does not depend on choices of integers modulo n. If in the above example we
replace 10 and 4 by 22 and 28, then the sum is 50 which is again congruent
to 2 modulo 12. In general, we have to show that

a ≡ b (mod n) and a′ ≡ b′ (mod n)

imply that a+ a′ ≡ b+ b′ (mod n). Indeed, if a = b+ kn and a′ = b′ + k′n,
then

a+ a′ = b+ b′ + (k + k′)n ≡ b+ b′ (mod n).

Similarly, in order to check that the modular multiplication is well de-
fined, we have to show that

a ≡ b (mod n) and a′ ≡ b′ (mod n)

imply that aa′ ≡ bb′ (mod n). Indeed, if a = b+ kn and a′ = b′ + k′n, then

aa′ = (b+ kn)(b′ + k′n) = bb′ + (k + k′ + n)n ≡ bb′ (mod n).

In order to illustrate the power of congruences we prove the following
criterion which describes, in simple terms, whether a positive integer is di-
visible by 9.

Proposition 7. A positive integer m is divisible by 9 if and only if the
sum of digits of m, in base 10, is divisible by 9.

Proof. Write m = anan−1 · · · a1a0 where an, an−1, . . . , a1, a0 are the
digits of m. In other words,

m = an10n + an−110n−1 + · · ·+ a1101 + a0100.

Next, notice that 10 ≡ 1 (mod 9). If we raise this equation to the k-th
power, we get 10k ≡ 1 (mod 9) for every k. It follows that

m ≡ an + an−1 + · · ·+ a1 + a0 (mod 9),

as claimed. �

For example, 111111111 is divisible by 9 since the sum of its digits is 9.

A new and sophisticated application of congruences is given by the In-
ternational Standard Book Number (ISBN). This number, usually printed
on the back cover of the book, is intended to uniquely identify the book.
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In addition, the number is designed so that it includes a check digit. The
purpose of this digit, as it will be explained in a moment, is to detect one
of the following two errors, which can likely occur in the process of typing
an ISBN number:

• Entering incorrectly one digit of an ISBN number.
• Switching two digits of an ISBN number.

An ISBN number is a 10 digit number x1 . . . x10 divided into four parts
of variable length, for example,

0-12-732961-7.

The first group identifies where the book was published. It is 0 in this
example, which indicates that the book in question was published in US,
Canada, UK, Australia or New Zealand. The second group identifies a
publisher. The third group identifies a particular title and edition. The last
number, 7 in this example, is the check digit x10. It is computed, modulo
11, using the first 9 digits:

x10 ≡
9∑
i=1

ixi (mod 11).

In particular, x10 can take values 0, 1, . . . , 9 and 10. Since 10 has two digits,
it is entered as X.

Proposition 8. Assume that a ten digit number y1 . . . y10 is obtained
by entering a ten digit ISBN number x1 . . . x10 so that either one digit was
entered incorrectly or two digits were switched. Then

y10 6≡
9∑
i=1

iyi (mod 11).

Proof. Notice that, by adding 10x10 to both sides, the congruence

9∑
i=1

ixi ≡ x10 (mod 11).

is equivalent to
10∑
i=1

ixi ≡ 0 (mod 11).

Now assume that the number y1 . . . y10 differs from the valid ISBN number
x1 . . . x10 in only one digit yj . Then

10∑
i=1

iyi ≡
10∑
i=1

iyi −
10∑
i=1

ixi = j(yj − xj) 6≡ 0 (mod 11)

since 11 does not divide j(yj − xj). Thus y1 . . . y10 is not a valid ISBN
number. Next, assume that the number y1 . . . y10 is obtained from the valid
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ISBN number x1 . . . x10 by switching two digits, xj 6= xk. That is, yj = xk
and yk = xj . Then

10∑
i=1

iyi ≡
10∑
i=1

iyi −
10∑
i=1

ixi = (k − j)(yk − yj) 6≡ 0 (mod 11)

since 11 does not divide (k − j)(yk − yj). �

In some cases it is even possible to recover a valid ISBN number. Assume
that a number y1 . . . y10 is obtained from a valid ISBN number x1 . . . x10 by
switching consecutive digits, xi and xi+1. Then, in order to find the valid
ISBN number, we need to find and switch two consecutive digits yi and yi+1

such that
10∑
i=1

i · yi ≡ yi+1 − yi (mod 11)

For example, consider the number 0-354-18834-6. Then

1 · 0 + 2 · 3 + 3 · 5 + 4 · 4 + 5 · 1 + 6 · 8 + 7 · 8 + 8 · 3 + 9 · 4− 6 ≡ 2 (mod 11).

Thus, we are looking for two consecutive digits in 0-354-18834-6 with dif-
ference 2. These digits are either 3 and 5 or 4 and 6. It follows that the
original ISBN number is either 0-534-18834-6 or 0-354-18836-4.

Exercises

1) Show that a positive integer m is divisible by 11 if and only if the al-
ternating sum of its digits is divisible by 11. Hint: notice that 10 ≡ −1
(mod 11).

2) Is 2121212121212121212121 divisible by 9? Is it divisible by 11?

3) The number 3-540-97285-9 is obtained from a valid ISBN number by
switching two consecutive digits. Find the ISBN number.

4) The number 0-31-030369-0 is obtained from a valid ISBN number by
switching two consecutive digits. Find the ISBN number.

5) Let n be a positive integer. If x ≡ y (mod n) and y ≡ z (mod n) prove
that x ≡ z (mod n) for any three integers x, y and z.

3. Modular arithmetic

Fix a positive integer n. If a is any integer, then the set of all integers
congruent to a is called the class of a modulo n. The set of classes of integers
modulo n is denoted by Z/nZ. Since every number a can be written as
a = qn + r where 0 ≤ r < n, every class modulo n is uniquely represented
by an element in the set

{0, 1, . . . , n− 1}.
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The set of congruence classes is a group with respect to modular addition,
as all group axioms are inherited from Z. The class of 0 (all multiples of n)
is the identity element. The inverse of the class of a is the class of −a. For
example, consider n = 5. Then we have the following 5 classes:

{. . . ,−5, 0, 5, 10, . . .}
{. . . ,−4, 1, 6, 11, . . .}
{. . . ,−3, 2, 7, 12, . . .}
{. . . ,−2, 3, 8, 13, . . .}
{. . . ,−1, 4, 9, 14, . . .}

A complete set of representatives is {0, 1, 2, 3, 4}, so we write

Z/5Z = {0, 1, 2, 3, 4}.

The addition modulo 5 in terms of these representatives is given by the
following table:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

The situation with modular multiplication is more delicate. The mul-
tiplication is associative, this is inherited from integers, and the class of 1
is an identity element. But what about inverses? Integers, except −1 and
1, do not have an inverse with respect to multiplication. In particular, any
group structure with respect to modular multiplication is not simply inher-
ited from Z. In order to understand the situation, we start with an example.
The multiplication table modulo 5 is:

· 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

We see from the table that every non-zero number modulo 5 has a mul-
tiplicative inverse, and (Z/5Z)× = {1, 2, 3, 4} is a group with respect to
multiplication. It turns out that the same holds for reduction modulo p for
every prime p:

Proposition 9. Let p be a prime. Then (Z/pZ)× = {1, 2, 3, . . . p − 1}
is a group for modular multiplication.
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Proof. First of all, note that the set of all invertible elements in Z/pZ
is closed under multiplication. Indeed, if a and b are invertible, then ab is
also invertible since

(ab)−1 = b−1a−1.

Since 0 is clearly not invertible, it remains to show that every a, 1 ≤ a ≤ p−1,
has an inverse. To that end, we must find an integer x such that ax ≡ 1
(mod p). Since p is a prime and a < p it follows that gcd(a, p) = 1. Thus,
there exist two integers x and y such that

ax+ py = 1

which clearly implies that ax ≡ 1 (mod p), as desired. �

As an example consider the case p = 31 and a = 7. In order to find the
inverse of 7 we need to solve the equation

7x+ 31y = 1.

As we know this is accomplished by applying the Euclidean Algorithm:

31 = 4 · 7 + 3

7 = 2 · 3 + 1.

The first equation gives 3 = 31− 4 · 7 which we then substitute for 3 in the
second equation yielding

7 = 2 · (31− 4 · 7) + 1 or 9 · 7− 2 · 31 = 1.

Thus, we have obtained that 9 is the multiplicative inverse of 7 modulo 31.

Once we know that 9 is the inverse of 7 modulo 31, we can solve the
linear equation

7x ≡ 11 (mod 31)

simply by multiplying both sides of the congruence by 9:

9 · (7x) ≡ 9 · 11 (mod 31).

Since 9 · 7 ≡ 1 (mod 31) and 9 · 11 ≡ 6 (mod 31), it follows that 6 is a
solution of the original congruence.

Exercises

1) Write down the addition table for Z/5Z using {5, 6, 7, 8, 9} as represen-
tatives of classes. Verify, by inspection, that the entries of the resulting
table are congruent to those obtained using {0, 1, 2, 3, 4} as representatives
of classes.

2) Write down the multiplication table for Z/5Z using {5, 6, 7, 8, 9} as rep-
resentatives of classes. Verify, by inspection, that the entries of the resulting
table are congruent to those obtained using {0, 1, 2, 3, 4} as representatives
of classes.
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3) Write down the multiplication table for Z/11Z, the set of integers modulo
11. The subset of invertible integers modulo 11 is denoted by (Z/11Z)×.
Extract the multiplication table for (Z/11Z)×.

4) Write down the multiplication table for Z/10Z, the set of integers modulo
10. The subset of invertible integers modulo 10 is denoted by (Z/10Z)×. Ex-
tract the multiplication table for (Z/10Z)×. How many invertible elements
do we have here?

5) Write down the multiplication table for Z/12Z, the set of integers modulo
12. The subset of invertible integers modulo 12 is denoted by (Z/12Z)×. Ex-
tract the multiplication table for (Z/12Z)×. How many invertible elements
do we have here?

6) Use the Euclidean Algorithm to compute the multiplicative inverse of 131
modulo 1979.

7) Use the previous problem to solve

131x ≡ 11 (mod 1979).

8) Use the Euclidean Algorithm to compute the multiplicative inverse of 127
modulo 1091.

9) Use the previous problem to solve

127x ≡ 11 (mod 1091).

4. Theorem of Lagrange

Fix a group G with an identity element e. Let g be any element in G.
For every positive integer n, define gn = g · · · g where we have n factors.
The order of an element g is the smallest positive integer k such that

gk = e.

The case k = ∞ is allowed. In that case we say that g has infinite order.
The order of g is denoted by o(g). If G is finite, then the number of elements
in G is called the order of G. Moreover, every element in a finite group has
a finite order. This can be easily seen as follows. Consider (an infinite)
sequence

g, g2, g3, . . .

in G. Since G is finite, the elements in the sequence cannot be all different.
Thus gn = gm for some n > m. After canceling gm on both sides we get
gn−m = e which shows that g has finite order.

Examples:
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(1) G = Q× and g = 2. Then the powers of 2 are 2, 22, 23, · · · 6= 1, so 2
has infinite order. Only two rational numbers have a finite order.
They are -1 and 1.

(2) G = (Z/7Z)× and g = 2. Then, modulo 7, the powers of 2 are
1, 2, 22 = 4, 23 = 1. Hence the order of 2 is 3. One can easily
tabulate orders of all elements in G, and they are given by the
following table:

g o(g)
1 1
2 3
3 6
4 3
5 6
6 2

(3) Let G be the group of all isometries of a square. It contains 4
rotations, with angles 0, 90, 180 and 270 degrees. For sake of
definiteness, we assume that the rotations are in counter-clockwise
direction, and rϕ will denote the rotation for angle ϕ. In addition,
we have four axial symmetries as seen on the picture. We have
eight isometries in all.

�
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�
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@
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The group law is the composition of isometries ◦. As an ex-
ample, we shall calculate s ◦ t. The idea is to pick a triangle, for
example ∆(P,O,Q), and then act on its vertices by t and s. This
gives:

s ◦ t(P ) = s(t(P )) = s(S) = S

and
s ◦ t(Q) = s(t(Q)) = s(R) = P.

Since s ◦ t(O) = O, we conclude that s ◦ t moves the triangle
∆(P,O,Q) to the triangle ∆(S,O, P ). Since any isometry is com-
pletely determined by its action on any triangle, it follows that
s ◦ t = r90. A similar calculation shows that t ◦ s = r270. In par-
ticular, the group here is not commutative. The orders of elements
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are tabulated in the following table:

g o(g)
r0 1
r90 4
r180 2
r270 4
s 2
s′ 2
t 2
t′ 2

Next, observe from the tables, that the order of the group (6 and 8 in
the last two examples, respectively) is divisible by the order of any group
element. This is not an accident. In fact, we have the following important
result:

Theorem 10. (Theorem of Lagrange) Let G be a finite group. Then the
order of any element g in G divides the order of G. In particular, if |G|
denotes the order of G, then g|G| = e.

Proof. Assume that the order of g is k. In order to prove that k divides
the order of G we shall arrange all elements of the group in a rectangle with
k columns as follows. As the first row, we write down all possible (different)
powers of g:

e g g2 . . . gk−1

If this row contains all elements of G, then |G| = k and we are done. If not
then there exists an element x in G which is not in the first row. Then we
can write the second row of elements in G by multiplying x by all possible
powers of g. This gives a rectangular table

e g g2 . . . gk−1

x xg xg2 . . . xgk−1

Since xgi 6= xgj if gi 6= gj , the elements of the second row are all different.
Also, the two rows are disjoint. If not, then xgi = gj , for some integers i and
j, which implies that x = gi−j . But this is impossible since x was picked so
that it was not on the first row. If the two rows account for all elements of
G, then |G| = 2k and we are done. Otherwise we pick an element y not on
the first two rows, form the third row by

y yg yg2 . . . ygk−1

and argue as before to show that the third row contains k distinct elements
and that the third row is disjoint from the first two. Since G is finite, this
process eventually stops after, say, r steps. Thus, we can arrange all group
elements in an r × k rectangle. It follows that |G| = rk. �
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We give two applications of the Theorem of Lagrange. Consider the
group (Z/pZ)× where p is a prime. The order of this group is p − 1 thus,
Theorem 10 implies that ap−1 = e for every a in (Z/pZ)×. In terms of
integers and congruences, we have

ap−1 ≡ 1 (mod p),

for every integer a not divisible by p. This statement is known as the Fermat
Little Theorem (FLT). Thus, the FLT, no matter how famous, is just a
special case of the theorem of Lagrange!

Let G be any group of order p, where p is a prime. Let g be an element
in G different from the identity element e. Then the order of g divides p
and is not 1. It follows that the order of g is p, and the powers

e, g, g2, . . . , gp−1

account for all elements in the group. Since multiplying the powers of g
amounts to adding exponents modulo p, the group G is essentially the same
as the group Z/pZ.

Exercises

1) Let G be a group and g an element in G of order n. Let m be a positive
integer such that gm = e. Show that n divides m. Hint: write m = qn + r
with 0 ≤ r < n.

2) Repeat the argument of the Theorem of Lagrange with G = (Z/13Z)×

and g = 5.

3) Consider the group of symmetries of a square, as in the Example 3 above.
Compute the action of all group elements on the four points P , Q, R and
S. For example, the action of the group on P is given by

g r0 r90 r180 r270 s s′ t t′

g(P ) P S R Q R P S Q

4) Use the information obtained in the previous exercise to write down the
multiplication table for the group of isometries of a square.

5) Let G be a group and g an element in G of order 9. What is the order of
g3? What is the order of g2?

6) Let g be a group element such that g9 = e and g16 = e where e is the
identity element. Show that g = e.

5. Chinese Remainder Theorem

Let m be a positive integer bigger than one, and consider multiplication
modulo m. Let (Z/mZ)× be the group of invertible elements, with respect
to modular multiplication, in Z/mZ. One of the goals of this section is to
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determine the order of this group. Consider, for example, m = 8. Then the
full multiplication table is

* 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 4 6 0 2 4 6
3 3 6 1 4 7 2 5
4 4 0 4 0 4 0 4
5 5 2 7 4 1 6 3
6 6 4 2 0 6 4 2
7 7 6 5 4 3 2 1

Notice that every row (and column) contains 1 or 0, but not both. Thus
every number is either invertible or a zero divisor. For example, 4 is a zero
divisor since

2 · 4 ≡ 0 (mod 8).

Even without looking at the table it is easily seen that zero divisors cannot
be invertible. For example, if

4x ≡ 1 (mod 8)

for some integer x then, after multiplying both sides of this equation by 2,
we get

0 ≡ 2 (mod 8),

a contradiction. More generally, if gcd(a,m) > 1 then a is a zero divisor
modulo m. On the other hand, if gcd(a,m) = 1, then there exist two integers
x and y such that

ax+my = 1

which shows that a is invertible modulo m. Summarizing, for every m, the
set (Z/mZ)× of invertible elements for multiplication in Z/mZ is

(Z/mZ)× = {0 ≤ a ≤ m− 1 | gcd(a,m) = 1}.

The order of (Z/mZ)× is denoted by ϕ(m) and is called the “Euler func-
tion”. It is equal to the number of classes of integers modulo m, relatively
prime to m. If m = 8 then an integer a is prime modulo 8 if and only if it is
odd. There are 4 classes of integers modulo 8 represented by odd numbers.
In particular ϕ(8) = 4.

The theorem of Lagrange implies the following generalization of the Fer-
mat Little Theorem due to Euler.

Theorem 11. If a is relatively prime to m, then

aϕ(m) ≡ 1 (mod m).
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Take, for example, m = 8 and a = 3. Then

3ϕ(8) = 34 = 81 ≡ 1 (mod 8).

Our next task is to figure out how to calculate ϕ(m). If m = p is prime,
then ϕ(p) = p− 1. To compute ϕ(m) in general we will prove the following
two properties of ϕ:

(1) If m and n are relatively prime, then ϕ(mn) = ϕ(m)ϕ(n).
(2) If p is a prime, then ϕ(pn) = pn − pn−1 = pn−1(p− 1).

Since every integer can be factored into a product of primes, these two
properties suffice to calculate ϕ(m) for any integerm. Consider, for example,
m = 12. Then, by the first property,

ϕ(12) = ϕ(4)ϕ(3).

The second property implies that ϕ(3) = 3− 1 = 2 and ϕ(4) = 22 − 2 = 2.
Thus, ϕ(12) = 4. This is correct, since 1, 5, 7 and 11 are the four integers
less than 12 and prime to 12.

To prove (1) we will use the Chinese Remainder Theorem (CRT) which
says the following. Let m,n be two relatively prime integers. Then for any
two integers a, b, the system:{

x ≡ a (mod m)

x ≡ b (mod n)

has a unique solution x modulo mn or, a unique integer solution such that
0 ≤ x < m · n

The Chinese Reminder Theorem is an unusual type of statement since
there is one unknown and two equations. However, note that there are m
and n choices for a and b, respectively, which means that there are mn
possible systems in all. But mn is also the number of classes modulo mn,
which is the number of possible choices for x. Thus, in order to prove the
CRT, it is natural to consider proving all possible systems at once. This is
done as follows. Consider a mapping

i : Z/mnZ→ (Z/mZ)× (Z/nZ)

defined by i(x) = (x, x) where, in (x, x), the first x is considered modulo m
while the second x is considered modulo n.

As a working example, consider the case m = 4, n = 3 and the system{
x ≡ 2 (mod 4)

x ≡ 1 (mod 3)

So, in this case the map i is defined by reducing twelve elements of Z/12Z =
{0, 1, 2, ..., 11} modulo 4 and 3, respectively. For example i(7) = (3, 1). The
complete list is given by the following table:
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0 7→ (0, 0)

1 7→ (1, 1)

2 7→ (2, 2)

3 7→ (3, 0)

4 7→ (0, 1)

5 7→ (1, 2)

6 7→ (2, 0)

7 7→ (3, 1)

8 7→ (0, 2)

9 7→ (1, 0)

10 7→ (2, 1)

11 7→ (3, 2)

12 7→ (0, 0)

In particular, we see that x = 10 is a unique solution to our pair of
congruences. Thus, in order to prove CRT, it suffices to show that the
map i is a bijection (i.e. it is one-to-one and onto) between Z/mnZ and
Z/mZ× Z/nZ.

We shall first show that i is one to one. If i(x) = i(y) then

x ≡ y (mod m) and x ≡ y (mod n)

or,

m|x− y and n|x− y.
Since m and n are relatively prime, it follows that mn|(x − y) or x ≡ y
(mod mn). In words, the map i is one to one, as claimed

But, if the map i is one-to-one, it has to be onto since the two sets have
the same cardinalities. Thus, as x runs through all integers modulo mn, the
pairs (x, x) fill the set Z/mZ× Z/nZ.

Although we have just shown that the congruence system has a solu-
tion, a natural question is how to explicitly find the solution. For example,
consider the system

x ≡ 3 (mod 8)

x ≡ 5 (mod 9).

We can find a solution x modulo 72 of this system as follows. Since x ≡ 3
(mod 8), x must be one of the following numbers:

3, 11, 19, 27, 35, 43, 51, 59, 67.
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Indeed, these are all numbers less then 72 and congruent to 3 modulo 8.
These numbers are obtained by adding (multiples of) 8 to 3. By inspection
we find that 59 is the only number here congruent to 5 modulo 9.

More abstractly the system can be solved using the following two steps.
First, any number of the form x = 3 + 8y solves the first equation. Next,
substitute x = 3 + 8y into the second equation. This gives

3 + 8y ≡ 5 (mod 9)

and

8y ≡ 2 (mod 9).

Since 8 is relatively prime to 9 we can solve this equation by multiplying
both sides of the equation by the inverse of 8 modulo 9. The inverse is 8,
thus y ≡ 8 · 2 ≡ 7 (mod 9), and

x = 3 + 8y = 3 + 8 · 7 = 59.

Using the map i we can prove that ϕ(m,n) = ϕ(m)ϕ(n) for relatively
prime integers m and n. To that end, note that ϕ(mn) is the number of
elements in Z/mnZ prime to x, while ϕ(m)ϕ(n) is equal to the number of
pairs (a, b) in Z/mZ × Z/nZ such that a is prime to m and b is prime to
n. Since any pair (a, b) is given by i(x) = (x, x) for some x in Z/mnZ, it is
clear that x is prime to mn if and only if a ≡ x is prime to m and b ≡ x is
prime to n. It follows that i gives a bijection

i : (Z/mnZ)× → (Z/mZ)× × (Z/nZ)×.

This completes the proof of the first property of Euler’s function:

ϕ(mn) = ϕ(m)ϕ(n).

The proof of the second property of ϕ is is simple. Indeed, if 0 ≤ a ≤
pn − 1 is prime to pn then p does not divide a. Thus, in order to count a
relatively prime to pn, we need to throw away those that are multiples of p.
But the multiples of p are

0, p, 2p, . . . , pn − p,
which is pn−1 elements in all. Thus ϕ(pn) = pn − pn−1, as claimed.

As an illustration of what we have done so far we show how to determine
the last two digits of a large power. For example, the number 383 is too large
for any calculator, but we can determine its last two digits as follows. Note
that any number is congruent modulo 100 to the number given by the last
two digits, for example, 523412 ≡ 12 (mod 100). Thus we need to compute
383 modulo 100. Since 100 = 22 · 52, it follows that ϕ(100) = ϕ(22)ϕ(52) =
(22 − 2)(52 − 5) = 40, and a40 ≡ 1 (mod 100) for any integer a relatively
prime to 100. Thus

383 = 380 · 33 ≡ 33 ≡ 27 (mod 100).
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Exercises

1) Let m and n be two relatively prime integers. If m and n divide a show
that mn divides a.

2) Put ϕ(1) = 1. Compute ∑
d|1000

ϕ(d)

where the sum is taken over all divisors d of 1000 including 1 and 1000.

3) Solve the system of congruences

x ≡ 5 (mod 11)

x ≡ 7 (mod 13)

4) Solve the system of congruences

x ≡ 11 (mod 16)

x ≡ 16 (mod 27)

6) Find the last two digits of 39999.

7) Find the last two digits of 29999. (Note that 2 is not relatively prime to
100.) Hint: Compute 29999 modulo 25. Why is this enough?

8) Compute 325 modulo 45.





CHAPTER 3

Rings and Fields

1. Fields and Wilson’s Theorem

A ring is a set R with two binary operations, addition and multiplica-
tion (traditionally denoted by + and ·, respectively) satisfying the following
conditions:

(1) The set R is a group for addition. The unique identity element for
the addition operation is denoted by 0.

(2) The addition operation is commutative.
(3) The multiplication operation is associative. There exists an identity

element denoted by 1. We assume that 1 6= 0.
(4) The two operations are related by the distributive law:

a · (b+ c) = a · b+ a · c,

(b+ c) · a = b · a+ c · a.

If, in addition, the multiplication is commutative then we say that the
ring R is commutative. Examples of rings include the rings of integers Z,
integers modulo m, rational numbers Q, real numbers R and complex num-
bers C. These rings are all commutative. An example of a non-commutative
ring is the ring of all 2× 2 matrices with integer coefficients.

The set of elements in R invertible with respect to multiplication is
denoted by R×. If a and b are two invertible elements then the product a · b
is also invertible since

(a · b)−1 = b−1 · a−1.

The set of invertible elements R× is a group with respect to multiplication.
For example, Z× = {−1, 1}, (Z/mZ)× consist of all classes of integers mod-
ulo m that are relatively prime to m and Q× consists of all non-zero rational
numbers.

We note that 0 is not invertible in any ring R. This can be easily seen
as follows. If r is any element in R then, by the distributive property,

r · 0 = r · (0 + 0) = r · 0 + r · 0.

Since we can cancel r · 0 from both sides, we conclude that r · 0 = 0. In
words, multiplying 0 by any element in R gives always 0. Since 0 is different
from 1, 0 cannot be invertible.

41
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A commutative ring R is, furthermore, a field if every element different
from 0 has a multiplicative inverse. Examples of fields include

Z/pZ, Q, R, C,

where p is a prime. We point out that the finite field Z/pZ is often denoted
by Fp. We shall use both notations.

If R is a commutative ring, then we can manipulate expressions involving
multiplication and addition in the usual fashion. For example, the identity

(a+ b)2 = a2 + 2ab+ b2

holds, and this can be verified using the ring axioms as follows:

(a+ b)(a+ b) =
= (a+ b)a+ (a+ b)b distributive law
= (a2 + ba) + (ab+ b2) distributive law
= a2 + (ba+ ab) + b2 associativity for +
= a2 + 2ab+ b2 commutativity for ·

Starting from a commutative ring R we can construct a new ring: the
ring of polynomials with coefficients in R. More precisely, let R[x] denote
the set of all polynomials

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

with coefficients an, an−1, . . . , a1, a0 in R. Then R[x] is a ring with respect
to the usual addition and multiplication of polynomials. If an 6= 0 then the
degree of the polynomial f is n. Finding roots of polynomials is a central
theme in number theory. Finding roots of a degree one polynomial amounts
to solving a linear equation ax = b where a and b are elements in R. This
is done by “dividing” by a or, more precisely, multiplying both sides of the
equation by an inverse of a with respect to multiplication, provided that
such an inverse exists. Consider, for example, the ring R = Z/34Z and
there linear equations

7x ≡ 4 (mod 34),

6x ≡ 7 (mod 34),

6x ≡ 4 (mod 34).

Since 5 is the multiplicative inverse of 7 modulo 34, we can multiply both
sides of the first equation by 5 to obtain

x ≡ 5 · 4 (mod 34).

This shows that 5 · 4 = 20 is a (unique) solution of the first equation. Since
6 is not invertible modulo 34 (gcd(6, 34) = 2) the approach used for the first
equation will not work for the other two equations. We claim that the first
equation has no solutions, while the third has two. Indeed, If x is a solution
of the second equation, then 6x−7 = 34k for some integer k. Since 2 divides
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both 6 and 34, it follows that 2 divides 7 and this is a contradiction. Thus
the second equation has no solution. The third equation

6x ≡ 4 (mod 34)

can be rewritten as
2(3x− 2) ≡ 0 (mod 34).

This equation has two solutions, x1 and x2, given by (unique) solutions of
the following two congruences{

3x1 − 2 ≡ 0 (mod 34)

3x2 − 2 ≡ 17 (mod 34).

Notice that the identity 2 · 17 = 0 in Z/34Z is responsible for the fact that
we have two solutions of a linear (degree one) equation. More generally,
assume that in a ring R we have two two non-zero elements a and b such
that

ab = 0.

Such numbers are called zero divisors. Then the equation ax = 0 clearly
has at least two solutions: x = 0 and b.

Proposition 12. Fields have no zero divisors, that is, if a · b = 0 and
a 6= 0 then b = 0.

Proof. Since a 6= 0, there exists a multiplicative inverse a−1. Then

a · b = 0⇒ a−1(a · b) = a−1 · 0⇒ (a−1 · a)b = 0⇒ b = 0.

�

As the next example, consider the quadratic equation

x2 − 1 = (x+ 1)(x− 1) = 0.

If the ring R has no zero divisors, which is true if R is a field, then the
product (x+ 1)(x− 1) is zero if and only if one of the two factors is 0. This
implies that x = 1 or −1. Otherwise, this equation can have more than one
solution as the example R = Z/8Z shows. The solutions of

x2 − 1 = 0

in Z/8Z are 3 and −3, in addition to obvious 1 and −1. Indeed, if x = 3,
then

(x+ 1)(x− 1) = 4 · 2 = 8 ≡ 0 (mod 8).

Again, the presence of zero divisors in Z/8Z is responsible for additional
solutions of the equation x2 − 1 = 0.

As an application of our study of the equation x2 − 1 = 0, we shall now
derive Wilson’s theorem which says that

(p− 1)! ≡ −1 (mod p)

for every odd prime p. Another way to state this theorem is that (p− 1)! =
−1 holds in Z/pZ. Here, as usual, (p − 1)! = 1 · 2 · · · · · (p − 1). The proof
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of this fact relies on the fact that Z/pZ is a field. In particular, x2 − 1 has
only two roots in Z/pZ: 1 and −1.

Before proceeding to the general case consider the case of p = 7. The
multiplication table in (Z/7Z)× is shown below:

* 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

The table clearly shows the multiplicative inverse of each element: 2 is the
inverse of 4 and 3 is the inverse of 5. Thus

1 · 2 · 3 · 4 · 5 · 6 = (1 · 6) · (2 · 4) · (3 · 5) = (−1) · (1) · (1) = −1

where we have used that 6 ≡ −1 (mod 7).
This example is quite illustrative since it shows that cancellations in

(p− 1)! come from pairing elements with their inverses. However, as it can
also be seen in the example, some elements are their own inverses. Such
elements satisfy the equation x2 = 1. It follows that

(p− 1)! =
∏
x2=1

x.

Since Z/pZ is a field, the equation x2 = 1 has only two solutions: x = 1 and
x = −1. It follows that (p− 1)! = −1, as desired.

Exercises

1) Solve x62 − 16 = 0 in Z/31Z. Hint: use the Fermat Little Theorem to
reduce the exponent.

2) Solve 19x− 11 = 0 in Z/31Z.

3) Solve 13x− 11 = 0 in Z/31Z.

4) Solve the following three equations in the ring Z/30Z.

21x− 24 = 0,

24x− 11 = 0,

11x− 24 = 0.

5) Let R be a ring and let −1 denote the inverse of 1 for addition. Show
that, for every element r,

(−1) · r = −r
where −r is the inverse of r for addition. Hint: use 0 · r = 0.
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2. Field Characteristic and Frobenius

Let F be a field. It is a set with two operations + (addition) and ·
(multiplication) which satisfy the set of axioms given in the previous lecture.
In particular, the field F has at least two elements 0 and 1. Every positive
integer n can be identified with an element n of F defined by

n = 1 + · · ·+ 1︸ ︷︷ ︸
n−times

.

Note that

n+m = n+m.

Moreover, it follows from the distributive property in F that the numbers
n and m multiply by the formula

n ·m = (1 + · · ·+ 1︸ ︷︷ ︸
n−times

)(1 + · · ·+ 1︸ ︷︷ ︸
m−times

) = 1 + · · ·+ 1︸ ︷︷ ︸
nm−times

= nm.

This shows that the elements n add and multiply in the same way as integers.
In particular, it is safe to write n instead of n, and we shall do so when it
causes no confusion.

We have now two possibilities. Either n 6= 0 for every positive integer n,
or there exists a positive integer n such that n = 0 in F . In the first case we
say that the field F has characteristic 0. Examples of such fields are Q, R
and C. In the second case we say that the field F has a positive characteristic
or, more precisely, characteristic p where p is the smallest positive integer
such that p = 0. For example, F = Z/3Z has the field characteristic 3 since

1 + 1 + 1 = 0

in Z/3Z. More generally, if p is a prime, then the finite field Z/pZ has the
characteristic p. We have the following important observation:

The field characteristic is either 0 or a positive prime number p.

This is really easy. Assume, for example, that 6 = 1+1+1+1+1+1 = 0
in a field F . This equation can be rewritten as

0 = 1 + 1 + 1 + 1 + 1 + 1 = (1 + 1 + 1)(1 + 1).

Since the field F does not have zero divisors we must have either 1+1+1 = 0
or 1+1 = 0 in F , that is, the characteristic of F is 2 or 3. Of course, the same
argument can be repeated for every composite n such that n = 1+· · ·+1 = 0.
This shows that the field characteristic must be 0 or a prime number.

Another important observation of this discussion is that if the charac-
teristic of the field F is 0, then the ring of integers Z can be viewed as a
subring of F . If the characteristic of F is p then F contains Fp = Z/pZ as
a sub-field.
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Proposition 13. (5-th grader’s dream) Let F be a field of characteristic
p. Then for any two elements a and b in F we have

(a+ b)p = ap + bp.

Proof. The p-th power of a+ b can be expressed in terms of binomial
coefficients:

(a+ b)p = ap +

(
p
1

)
ap−1b+

(
p
2

)
ap−2b2 + · · ·+

(
p

p− 1

)
abp−1 + bp.

The binomial coefficients are computed using the Pascal triangle. In the
characteristic p, the coefficients are computed modulo p. For example, if
p = 7, then the first eight rows of the Pascal triangle calculated modulo 7
are.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 3 3 5 1

1 6 1 6 1 6 1
1 0 0 0 0 0 0 1

Here the first 5 rows coincide with the usual Pascal triangle. The first
difference appears in the sixth row, where instead of 10 (twice) we have
3 ≡ 10 (mod 7). The vanishing of coefficients modulo 7 in the 8-th row or,
more generally, vanishing of coefficients modulo p in the p+ 1-st row can be
easily explained. Recall that the binomial coefficients are integers and given
by the following formula: (

p
k

)
=

p!

n!(p− n)!
.

Since p is prime, both factors in the denominator do not contain p as a
factor, as they are products of numbers less than p. On the other hand, the
numerator is divisible by p. Thus, the quotient of the numerator and the
denominator is still divisible by p. It follows that the binomial coefficients are
0, when considered as elements of the field F . This completes the proof. �

The above proposition shows that the map Fr(x) = xp, also called the
“Frobenius map”, is rather interesting, since

Fr(ab) = Fr(a) · Fr(b)

and

Fr(x+ y) = Fr(x) + Fr(x)



2. FIELD CHARACTERISTIC AND FROBENIUS 47

which implies that Fr is a homomorphism for both group structures at the
same time. In this sense it is similar to the conjugation of complex num-
bers. But that is not all. Recall that if x is a complex number such that
x = x̄, then x is a real number. We have a similar statement for fields of
characteristic p.

Proposition 14. Let F be a field of characteristic p. Let x be an ele-
ment in F . Then Fr(x) = x if and only if x is in the subfield Fp = Z/pZ of
F .

Proof. The equation Fr(x) = x can be written as

xp − x = 0.

Thus, an element of the field F satisfies Fr(x) = x if and only if it is a root
of the polynomial xp− x. By the Little Fermat Theorem, all elements of Fp
are roots of this polynomial. In this way we have already accounted for p
roots of xp − x. Since, over any field, a polynomial of degree p cannot have
more then p roots, the elements of Fp are precisely all roots of xp − x. �

We shall now construct some additional examples of finite fields. Com-
plex numbers z = x+ iy such that x and y are integers are called Gaussian
integers. Here, of course, i2 = −1. Gaussian integers also admit modular
arithmetic. If n is a positive integer, two Gaussian integers are said to be
congruent modulo n

a+ bi ≡ c+ di (mod n)

if a ≡ c (mod n) and b ≡ d (mod n). Addition and multiplication are
performed just as with the complex numbers, except the coefficients x and
y are always considered modulo n. For example, if n = 11 then

(2 + 5i)(5 + 4i) = −10 + 33i ≡ 1 + 0i (mod 11).

If p is a prime such that p ≡ 3 (mod 4) then the set of Gaussian integers
modulo p is a field of characteristic p which is usually denoted by Fp2 . Since
x and y are integers modulo p, there are p choices for both, x and y. In
all, we have p2 elements in Fp2 . This counting principle can be illustrated
as follows. There are 100 two-digit numbers: 00, 01, . . . , 99. There are 10
choices for the first digit and 10 choices for the second digits. In all, we can
write down

10× 10 = 100

numbers using precisely two digits. If a + bi is a Gaussian integer then,
modulo p, we have

(a+ bi)p ≡ ap + bpip (mod p).

By Fermat’s Little Theorem ap ≡ a (mod p) and bp ≡ b (mod p). It remains
to compute ip. Since p ≡ 3 (mod 4), we can write p = 4k + 3. Since i4 = 1
and i3 = −i it follows that

ip = i4k+3 = i4k · i3 = −i.
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Summarizing, we have shown that

(a+ bi)p ≡ a− bi = a+ bi (mod p)

making the analogy of between the Frobenius map and the complex conju-
gation rather convincing.

Exercises

1) Build the first 12 rows of the Pascal triangle modulo 11.

2) Prove that (
n+ 1
k

)
=

(
n
k

)
+

(
n

k − 1

)
.

3. Quadratic Numbers

Quadratic integers are solutions of quadratic equations x2 + px+ q = 0
such that p and q are integers. For example, 2 +

√
3 is a solution of

x2 − 4x+ 1 = 0.

Thus it is a quadratic integer. Solutions of quadratic equations such that p
and q to are rational numbers are called quadratic rationals.

Quadratic integers and rationals can be grouped together to form rings
and fields. For example, let Z[

√
3] be the set of all real numbers a + b

√
3

such that a and b are integers. Similarly, let Q[
√

3] be the set of all real
numbers a+ b

√
3 such a and b are rational numbers. Both Z[

√
3] and Q[

√
3]

are closed under addition (clearly) and under multiplication, since

(a+ b
√

3)(c+ d
√

3) = (ac+ 3bd) + (ad+ bc)
√

3.

The elements of Z[
√

3] and Q[
√

3] are (usual) real numbers, so the ring
axioms are inherited. More exciting, however, is to verify that Q[

√
3] is a

field. This can be checked as follows. Consider, for example α = 7 + 3
√

3.
Then

α−1 =
1

7 + 3
√

3
=

1

7 + 3
√

3
· 7− 3

√
3

7− 3
√

3
=

7

22
− 3

22

√
3.

The real issue here was whether the inverse of α, which clearly exists since α
is a non-zero real number, is contained in Q[

√
3]. The trick here was provided

by so-called rationalization of the denominator, which we all learn in grade
school. Of course this works for general α = a + b

√
3. Let ᾱ = a− b

√
3 be

the conjugate of α. Then

α−1 =
1

α
=

1

α
· ᾱ
ᾱ

=
a− b

√
3

a2 − 3b2
.
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The number αᾱ = a2 − 3b2 is abbreviated by N(α) and called the norm of
α. Note that N(α) is not zero unless α is 0. Indeed, a2 − 3b2 = 0 implies
that √

3 =
a

b
or
√

3 = −a
b

which is not possible since
√

3 is not a rational number. This shows that
Q[
√

3] is a field.

The ring R = Z[
√

3] admits modular arithmetic just as the ordinary
integers. More precisely, we say that

a+ b
√

3 ≡ c+ d
√

3 (mod p)

if {
a ≡ c (mod p)

b ≡ d (mod p).

Clearly, modulo p, there are p2 classes of elements of Z[
√

3]. This set will
be denoted by R/pR, by analogy with Z/pZ. Again, we have a question
whether an element a+b

√
3 in R/pR has a multiplicative inverse. The same

formula for inverse works here: the inverse of a+b
√

3 is given by dividing the
conjugate a− b

√
3 by the norm a2− 3b2. In particular, a+ b

√
3 is invertible

if and only if a2 − 3b2 is an integer invertible modulo p.

For example, consider 5 + 3
√

3 modulo 7. The norm of 5 + 3
√

3 is −2.
The multiplicative inverse of −2 modulo 7, is −4. Thus the inverse of 5+3

√
3

is
(5− 3

√
3)(−4) = −20 + 12

√
3 ≡ 1 + 5

√
3 (mod 7).

Indeed,

(5 + 3
√

3)(1 + 5
√

3) = 50 + 28
√

3 ≡ 1 (mod 7).

As the next example, consider 4 + 3
√

3 modulo 11. The norm of 4 + 3
√

3
is 42 − 3 · 32 = −11 ≡ 0 (mod 11). In particular, the norm is not invertible
modulo 11. Moreover,

(4 + 3
√

3)(4− 3
√

3) ≡ 0 (mod 11)

and this shows that 4+3
√

3 is a zero divisor. Zero divisors are not invertible,
thus 4 + 3

√
3 does not have a multiplicative inverse in R/11R.

The two examples illustrate the following dichotomy for quadratic inte-
gers modulo a prime p: Either the norm is relatively prime to p, and the
integer is invertible, or the norm is divisible by p, and the integer is a zero
divisor. This observation is useful in determining the order of the group of
invertible elements of R/pR which is, as usual, denoted by (R/pR)×. The
answer depends on whether 3 is a square modulo p.

Theorem 15. Let R = Z[
√

3] and p an odd prime different from 3.
Then:

(1) If 3 is not a square modulo p then the order of (R/pR)× is p2 − 1.
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(2) If 3 is a square modulo p then the order of (R/pR)× is (p− 1)2.

In particular, if 3 is not a square modulo p then R/pR is a field with p2

elements.

Proof. The proof of this theorem is not difficult at all! If x2− 3y2 ≡ 0
(mod p), for some x+ y

√
3 in R/pR then

3 ≡ (xy−1)2 (mod p)

which implies that 3 is a square modulo p. Thus, if 3 is not a square modulo
p then the norm is invertible modulo p for every non-zero α. It follows that
α−1 exists for every non-zero α. This takes care of the first case, when 3 is
not a square modulo p. In the second case we need to count all elements
with norm congruent to 0 modulo p. Since 3 is a square modulo p, then

3 ≡ s2 (mod p)

for some integer s, and the norm x2 − 3y2 can be factored as

x2 − 3y2 ≡ (x− sy)(x+ sy) (mod p).

Since Z/pZ has no zero divisors, the norm is 0 modulo p if and only if

x ≡ sy (mod p) or x ≡ −sy (mod p).

These are linear equations and are easy to solve. Each has p solutions. (x is
determined once we pick y, and there are p choices for y.) The two equations
have one solution in common, namely (x, y) = (0, 0). Thus we have 2p − 1
non-invertible elements, and p2− (2p−1) = (p−1)2 invertible elements. �

Consider p = 7, for example. Then 3 is not a square modulo 7 as the
following table shows:

x 1 2 3 4 5 6
x2 1 4 2 2 4 1

It follows that R/7R is a field. If p = 11, then 52 ≡ 3 (mod 11), and 3
is a square modulo 11. Thus x+ y

√
3 is not invertible modulo 11 if x = 5y

or −5y. Here is the list of all non-invertible elements in R/11R, twenty one
in all, since 0 appears twice on the list.

y 0 1 2 3 4 5 6 7 8 9 10
x 0 5 10 4 9 3 8 2 7 1 6
x 0 6 1 7 2 8 3 9 4 10 5

Of course, the number 3 in the previous discussion can be replaced by
any non-square integer D, positive or negative. For example, if D = −1,
then Z[

√
D] = Z[i], is the ring of Gauss’s integers. We record:

Theorem 16. Let R = Z[
√
D], where D is a non-square integer. Let p

be an odd prime not dividing D.
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(1) If D is not a square modulo p then the order of (R/pR)× is p2− 1.
(2) If D is a square modulo p then the order of (R/pR)× is (p− 1)2.

In particular, if D is not a square modulo p then R/pR is a field with p2

elements.

Exercises

1) Find a multiplicative inverse of 7− 3
√

5 modulo 11 and then modulo 17.
In each case verify that the answer is correct.

2) List all non-invertible modulo 11 quadratic integers of the type a+ b
√

5.

3) Find the inverse of 2 + 5i modulo 31. Is there an inverse of 2 + 5i modulo
29?

4) Is 1+
√
5

2 (the golden mean) a quadratic integer?

5) Describe all quadratic integers of the type a+ b
√

5.





CHAPTER 4

Primes

1. Infinitude of primes

In this and several successive lectures we focus our attention on primes.
We start by giving two proofs that there exist infinitely many primes. The
first and elementary proof involves a method of constructing a new prime,
from a given list of primes. More precisely, let S = {p1, p2, . . . , pn} be a set
of primes and consider the number

m = p1 · p2 · . . . · pn + 1.

Since m ≡ 1 (mod pi) for any pi in S, the number m is not divisible by pi.
Thus any prime divisor q of m is not in S. For example, if S = {2, 3, 5},
then

n = 2 · 3 · 5 + 1 = 31,

which is a prime already, different from 2, 3 and 5. In particular, no matter
how many primes we write down, we can always construct more. Thus,
there are infinitely many primes.

This proof is elementary and cute, but it has a drawback. It can not
be generalized easily to primes in progressions. We shall give another proof
that there are infinitely many primes using analysis! The central role in
arguments here is played by the Riemann zeta function

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ . . .

Note that ζ(1) is the (divergent) harmonic series while ζ(2), ζ(3) . . . are its
convergent analogues that you have studied in Calculus II. These (conver-
gence) properties can be established by comparing ζ(s) with the (improper)
integral of the function 1/xs over [1,∞). Indeed, forming lower and upper
sums corresponding to the subdivision [0,∞) = [1, 2] ∪ [2, 3] ∪ . . . gives

ζ(s)− 1 ≤
∫ ∞
1

1

xs
dx ≤ ζ(s).

Since the integral can be easily shown to be equal to 1/(s− 1) we see that
ζ(s) converges for s > 1 and

ζ(1) = 1 +
1

2
+

1

3
+ . . .+

1

n
+ . . . =∞.

53
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We are now ready to give the second proof that there are infinitely many
primes. Suppose we have only finitely many primes, say 2, 3 and 5 only, then
every integer n could be factored as n = 2s3t5u, and the harmonic series
could be rewritten as a finite product

(1 +
1

2
+

1

22
+ . . .)(1 +

1

3
+

1

32
+ . . .)(1 +

1

5
+

1

52
+ . . .).

Each of the three factors is a convergent geometric series that can be easily
summed up by the formula

1 +
1

p
+

1

p2
+ . . . =

1

1− 1
p

=
p

p− 1
.

In particular, if there were no other primes but only 2 3 and 5, then the
harmonic series would converge and be equal to

1 +
1

2
+

1

3
+ . . .+

1

n
+ . . . =

2

1
· 3

2
· 5

4
.

This is a contradiction, since the harmonic series diverges. Clearly, the same
argument shows that no finite list of primes is complete.

We now show two identities, which will be useful in the next section,
when we study primes in progressions:∏

p

p

p− 1
=∞,

and ∏
p

p

p+ 1
= 0,

Note that these products involve infinitely many factors, so some explanation
is on order. Just as an infinite sum (a series) is defined as a limit of the
sequence of partial sums, an infinite product is also defined to be the limit
of partial, finite products. For example, the first infinite product is defined
to be

lim
N→∞

∏
p≤N

p

p− 1
.

We now show that this limit is infinite. Using the formula for the geometric
series, write ∏

p≤N

p

p− 1
=
∏
p≤N

(1 +
1

p
+

1

p2
+ . . .).

After multiplying out the product of the geometric series on the right, we
get a sum of 1

n over all integers n whose factorization into primes involves
only primes p ≤ N . In particular, this sum includes all n ≤ N and we have
the following inequality

1 +
1

2
+ . . .+

1

N
≤
∏
p≤N

p

p− 1
.
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Since the harmonic series diverges, it follows that the product
∏
p

p
p−1 di-

verges, as claimed. In order to check that the second infinite product con-
verges to 0, the trick is to multiply the two products∏

p≤N

p

p− 1
·
∏
p≤N

p

p+ 1
=
∏
p≤N

p2

p2 − 1
.

Again, using the formula for the geometric series, write∏
p≤N

p2

p2 − 1
=
∏
p≤N

(1 +
1

p2
+

1

p4
+ . . .).

After multiplying out the product of the geometric series on the right, we
get a sum of 1

n2 over all integers n whose factorization into primes involves
only primes p ≤ N . In particular, this sum includes all n ≤ N and we have
the following inequalities

1 +
1

22
+ . . .+

1

N2
≤
∏
p≤N

p2

p− 1
≤ 1 +

1

22
+ . . .+

1

n2
+ . . . = ζ(2).

The limit, as N →∞, of the sum on the left is also ζ(2). It follows that

lim
N→∞

∏
p≤N

p2

p2 − 1
= ζ(2) =

π2

6

and

lim
N→∞

∏
p≤N

p

p+ 1
= 0

since this last limit is equal to the quotient ζ(2)
∞ of the two already computed

limits.

Now that we know that there are infinitely many primes, we can ask
how often they appear. A quite good answer to this question is given by the
Prime Number Theorem, which says that

π(x) ∼ x

lnx

where π(x) is the number of primes less than or equal to x. The proof of
this results uses techniques of complex analysis applied to the Riemann zeta
function.

Exercises

1) In this exercise you will prove that there are infinitely many primes p
congruent to 2 modulo 3 using an analogue of the first proof of infinitude
of primes. Let S = {p1, . . . pm} be any list of odd primes, and consider the
number

m = 3 · p1 · . . . · pn + 2.
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Note that m is odd and not divisible by 3, p1, . . . , pn. Thus, not one of the
prime factors of m is in S (or equal to 2 or 3). Show that at least one of the
prime factors of m is congruent to 2 modulo 3. Hint: if all prime factors are
congruent to 1 modulo 3, what would this imply for m?

2) Show that

1 +
1

22
+

1

32
+ . . .+

1

n2
+ . . . =

π2

6
by computing the integral ∫ π

−π
(
x

2
)2 dx

in two ways. First directly, and then substituting the Fourier series for x/2

x

2
= sinx− sin 2x

2
+

sin 3x

3
− . . . .

Hint: your calculation can be simplified considerably by knowing that, if
n 6= m, ∫ π

−π
sin(nx) · sin(mx) dx = 0.

3) Compute the improper integral∫ ∞
1

1

xs
dx.

2. Primes in progression

If a and d are two relatively prime integers, then a theorem of Dirichlet
says that the arithmetic progression a, a + d, a + 2d, . . . contains infinitely
many primes. For example, if we take d = 3, then the possible a are 1 and
2, and Dirichlet’s theorem says that the two sequences of integers

1, 4,7, 10,13, 16,19, . . .

and
2,5, 8,11, 14,17, 20 . . .

congruent to 1 and −1 modulo 3 respectively, contain infinitely many primes
each.

The theorem of Dirichlet is proved in a way similar to the second proof
of the infinitude of primes, given in the previous section. We shall do this
for d = 3. To that end, for every integer n not divisible by 3, let ε(n) be 1
or −1 so that

n ≡ ε(n) (mod 3).

The function ε is called a Dirichlet character because it is multiplicative,
meaning that

ε(nm) = ε(n)ε(m).
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The proof of this statement is easy. Indeed, multiplying the two congruences{
n ≡ ε(n) (mod 3)

n ≡ ε(n) (mod 3)

gives nm ≡ ε(n)ε(m) (mod 3). On the other hand, from the definition of ε,

nm ≡ ε(nm) (mod 3).

It follows that ε(nm) is congruent to ε(n)ε(m). Since each is equal to 1 or
-1, they have to be equal, as integers.

Just as we have used the harmonic series to show that there are infinitely
many primes we shall use the Dirichlet L-series

L = 1− 1

2
+

1

4
− . . .+ ε(n)

n
+ . . .

There a couple of key observations to be made here. First, this series is
an alternating series. In particular, it converges to a number sandwiched
between any two consecutive partial sums, for example

1− 1

2
< L < 1.

Second, since ε is multiplicative the series can be factored, similarly as the
harmonic series,

L = (1− 1

2
+

1

22
− . . .)(1− 1

5
+

1

52
− . . .)(1 +

1

7
+

1

72
+ . . .) . . . .

Here we have disregarded convergence issues, but for a moment. We will
return to it shortly. In the meantime, note that the individual factors are
again geometric series. The series with alternating signs appears for primes
p ≡ −1 (mod 3) and it is equal to

1− 1

p
+

1

p2
− . . . =

1

1 + 1
p

=
p

p+ 1
.

The series with all positive signs appears for primes p ≡ 1 (mod 3) and it
is equal to

1 +
1

p
+

1

p2
+ . . . =

1

1− 1
p

=
p

p− 1
.

It follows that the Dirichlet L-series is equal to the infinite product

L =
2

3
· 5

6
· 7

6
· 11

12
· 13

12
. . . ,

where for every prime p the factor is either p/(p− 1) > 1 or p/(p+ 1) < 1,
depending whether p is congruent to 1 or −1 modulo 3. Since 0 < L < ∞,
these two types of factors have to balance each other out, and this will imply
that both sequences contain infinitely many primes. More precisely, let S−

be the set of all primes congruent to −1 modulo 3. If S− is finite then, using

p

p+ 1
=
p− 1

p+ 1
· p

p− 1
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for every p in S−, we can rewrite L as

L = (
∏
p∈S−

p− 1

p+ 1
) · (
∏
p 6=3

p

p− 1
).

Since (from the previous section)

(
∏
p

p

p− 1
) =∞

it follows that L = ∞, a contradiction. Similarly, let S+ be the set of all
primes congruent to +1 modulo 3. If S+ is finite then, using

p

p− 1
=
p+ 1

p− 1
· p

p+ 1

for every p in S+, we can rewrite L as

L = (
∏
p∈S+

p+ 1

p− 1
) · (
∏
p 6=3

p

p+ 1
)

Since (from the previous section)

(
∏
p

p

p+ 1
) = 0

it follows that L = 0, a contradiction. Thus both sequences contain infinitely
many primes, as claimed.

However, since the L-series is not absolutely convergent, the above dis-
cussion is problematic. We now briefly sketch how this can be fixed. Con-
sider the Dirichlet L-function

L(s) = 1− 1

2s
+

1

4s
− . . .+ ε(n)

ns
+ . . .

This series is absolutely convergent if s > 1. If there are only finitely many
primes congruent to −1 modulo 3 then

L(s) = ∗ ζ(s),

where ∗ stands for a finite product that we leave to the reader to figure out.
Similarly, if there are only finitely many primes congruent to 1 modulo 3
then

L(s) = ∗ ζ(2s)

ζ(s)
.

Passing to the limit s → 1 we get L(1) = ∞ in and L(1) = 0 in two cases,
respectively, again contradicting the fact that 1/2 < L(1) < 1.

Exercises

1) Write down the L series necessary to show that there are infinitely many
primes congruent to 1 modulo 4, and infinitely many primes congruent to
−1 modulo 4.
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2) Show that ∏
p≡1(3)

p

p− 1
=∞ and

∏
p≡2(3)

p

p− 1
=∞

Hint: if one of the two products is finite, what would that imply for the
value of the Dirichlet L-series?

3) For every integer n relatively prime to 5 define

ε(n) =

{
1 if n ≡ 1, 4 (mod 5)

−1 if n ≡ 2, 3 (mod 5).

This is a Dirichlet character modulo 5. Show that ε is multiplicative, that
is, ε(nm) = ε(n)ε(m) for any pair of integers n and m relatively prime to 5.
Hint: ε(n) depends only on what n is equal to modulo 5, so this is a case by
case verification based on the multiplication table modulo 5:

· 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

4) Use the Dirichlet character from the previous exercise to define an appro-
priate L-series to show that there are infinitely many primes congruent to
1 or 4 modulo 5, and that there are infinitely many primes congruent to 2
or 3 modulo 5. Hint: the individual terms in the L-series decrease, and the
signs are +−−+ +−−+ + · · · so the value of the series can be as easily
estimated as for any alternating series.

3. Perfect Numbers and Mersenne Primes

A number n is “perfect” if it is equal to the sum of its proper divisors
(i.e. divisors d < n). For example, if n = 6 then its divisors are 1, 2, 3 and

1 + 2 + 3 = 6

so 6 is perfect. On the other hand, n = 12 is not perfect, since its divisors
are 1, 2, 3, 4, 6 and

1 + 2 + 3 + 4 + 6 = 16 6= 12.

Perfect numbers were interesting to the ancient Greeks, and they devised
a formula for them which involves Mersenne primes. The Greeks knew that
if 2` − 1 is a prime then 2`−1(2` − 1) is a perfect number. For example, if
` = 3 then 23− 1 = 7 is prime and n = 4 · 8 = 28 is another perfect number.
Indeed, the proper divisors of 28 are 1, 2, 4, 7, 14 and

1 + 2 + 4 + 7 + 14 = 28.
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Much later Euler showed that all even perfect numbers are of this shape:

Proposition 17. An even number n is perfect if and only if it can be
written as n = 2`−1(2` − 1) so that 2` − 1 is a prime.

This proposition is proved by means of the sigma function σ(n) which
is defined as the sum of all divisors of n, including 1 and n. Of course, the
number n is perfect if and only if

σ(n) = 2n.

This equation, by itself, is of no use unless we can exploit somehow the
function σ. To that end, we shall first establish some properties of the
function σ which are quite analogous to those of the Euler Function ϕ.
First of all, if p is prime then it is easy to calculate σ(pk). The divisors of
pk are 1, p1, p2, . . . , pk, so

σ(pk) = 1 + p+ · · ·+ pk =
pk+1 − 1

p− 1
.

Next, if m and n are relatively prime then

σ(mn) = σ(m) · σ(n).

This is not difficult to see, using the uniqueness of factorization. For example
if m = pk and n = ql for two different primes, then

σ(m) = 1 + p+ . . .+ pk

σ(n) = 1 + q + . . .+ ql

The product σ(m)σ(n) is a sum of terms piqj for all 0 ≤ i ≤ k and 0 ≤
j ≤ l, which are precisely all divisors of mn = pkql. This shows that
σ(mn) = σ(m)σ(n). For example:

σ(28) = σ(4 · 7) = σ(4)σ(7) =
23 − 1

2− 1
· 72 − 1

7− 1
= 7 · 8 = 2 · 28.

With these properties in hand, it is easy to check that the numbers
n = 2`−1(2` − 1) are perfect if 2` − 1 is prime. Indeed, since 2`−1 and 2` − 1
are relatively prime,

σ(2`−1(2` − 1)) = σ(2`−1)σ(2` − 1).

Since 2` − 1 is prime,

σ(2` − 1) = 1 + (2` − 1) = 2`.

Since

σ(2`−1) = 1 + 2 + . . .+ 2`−1 = 2` − 1

it follows that σ(n) = 2n, as desired. Euler’s converse, showing that all even
perfect numbers are of this form, is also not too difficult to check. Write an
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even perfect number as n = 2`−1 · r with r odd. Since σ is multiplicative we
have the following:

σ(n) = σ(2`−1) · σ(r) =
2` − 1

2− 1
· σ(r) = (2` − 1) · σ(r).

Using this expression for σ(n), the equation σ(n) = 2n can be rewritten as

(2` − 1) · σ(r) = 2`r.

Since 2`− 1 and 2` are relatively prime, 2`− 1 divides r, so r = (2`− 1)s for
some integer s. Therefore, the equation σ(n) = 2n can again be rewritten
as

n = 2`−1 · r = 2k(2` − 1)s,

which is quite close to what we want to prove. It remains to check that

(1) s = 1 and
(2) 2` − 1 is prime.

Let us prove (1) and (2) at the same time. Since n is even, ` > 1 and hence
r > s. If s 6= 1 then 1 and s are two different and proper divisors of r.
Hence

σ(r) ≥ 1 + s+ r.

On the other hand, (2` − 1)σ(r) = 2`(2` − 1)s implies that

σ(r) = 2`s = r + s.

This contradicts the inequality σ(r) ≥ 1 + s+ r. Thus s = 1 and

σ(r) = 1 + r

which is possible only if r is prime!

Of course, Euler’s theorem tells us nothing about odd perfect numbers.
There are no known examples of odd perfect numbers. It is still an open
problem either to find an odd perfect number or to show that they do not
exist. In one of the exercises bellow, you will show that odd perfect numbers
cannot be divisible by an odd power of 3.

As we have seen, a prominent role of the description of even perfect
numbers is played by Mersenne numbers:

M` = 2` − 1.

It is easy to see that M` is composite if ` is composite. For example, if
` = 6 = 2 · 3 then 26 − 1 can be factored as

26 − 1 = (22)3 − 1 = (22 − 1)(24 + 22 + 1) = 3 · 31.

On the other hand, if ` is a prime, thenM` may or may not be prime. The list
of known Mersenne primes is quite short - and, therefore, the list of known
perfect numbers is also short - and contains only about forty numbers. The
first ten Mersenne primes are the corresponding M` for

` = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, and 127.
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The numbers are named after Marin Mersenne (17th century, France) who
gave a list of primes M` for ` up to 257. That list was not correct since it
included composite numbers M67 and M257 and it did not include M61, M89

and M107. It is hard to believe that Mersenne was able to prove that M127

is prime since M127 is a huge number. Indeed, the number of digits of M127

is equal to

log10(2
127 − 1) ≈ 127 · log10(2) ≈ 38.

In order to factor M127 into prime factors, we can start dividing it by primes:
3, 5, 7, and so on. If we fail to find a prime factor less than

√
M127 ≈ 1019

then we can conclude that M127 is prime. By the Prime Number Theorem
the total number of primes less than 1019 is

π(1019) =
1019

ln(1019)
≈ 0.2× (billion)2.

It seems that we are destined to perform about billion-billions of increasingly
complicated divisions to check that M127 is prime! Even if Mersenne could
do about thousand divisions a day, and he started right after the BIG BANG
(5 billion years ago) he would not be (yet) through one-tenth of one-percent
of the verification.

The first rigorous proof of the primality of M127 was given by Lucas in
1878. The secret lies in a simple test, discovered by Lucas and simplified by
Lehmer, which requires only one division. This test is the topic of our next
section.

Exercises

1) Show that odd numbers divisible by an odd power of 3 are not perfect.
Hint: write n = 32k+1r with r prime to 3, and show that σ(32k+1) is divisible
by 4.

2) The 11-th Mersenne number 211 − 1 = 2047 is not prime. Find its prime
factors.

3) As of September 2006, the largest known and 44-th Mersenne prime is

M32,582,657.

Assuming that a page (of a book) has typically 40 lines, and each line fits
about 40 characters, estimate the number of pages needed just to print that
number.

4. The Lucas Lehmer test

A prominent theme in this and some other sections will be the problem
of determining whether an integer is prime. We shall introduce this topic
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through Mersenne numbers which, recall, are the numbers of the type

M` = 2` − 1.

As we have seen in the previous section, if ` is composite then M` is also
composite. On the other hand, if ` is a prime, then M` may or may not be
prime. The list of known Mersenne primes is quite short, and contains only
about forty numbers. The primality of

M127 = 170141183460469231731687303715884105727

was not proved until 1876 when Lucas devised a simple test to accomplish
this task. The number 2127−1 remained the largest known prime until mid-
twentieth century, when the introduction of modern computing machines
made possible using the Lucas-Lehmer test for large numbers. Even today,
the ongoing computer-based effort to determine larger and larger Mersenne
primes is based on this remarkable test:

Theorem 18. (Lucas-Lehmer) Define recursively a sequence sn of inte-
gers by s1 = 4 and sn+1 = s2n− 2. Let ` be an odd prime. Then M` = 2`− 1
is prime if and only if

s`−1 ≡ 0 (mod M`).

A remarkable feature of the test is that the test involves only one division
to determine whether M` is prime or not. However, notice that the numbers
sn become quickly very large. Indeed,

s1 = 4
s2 = 14
s3 = 194
s4 = 37634
s5 = 1416317954
s6 = 2005....6114

Thus, it is a good idea to calculate the numbers sn modulo M`. In prac-
tice, this means calculating again the numbers sn up to s`−1. For example,
if M7 = 127, then we take s1 = 4 and s2 = 14, but replace s3 = 194 by
s3 ≡ −60 (mod 127). Continuing in this fashion,

s4 ≡ (−60)2 − 2 ≡ 42 (mod 127)

s5 ≡ 422 − 2 ≡ −16 (mod 127)

s6 ≡ (−16)2 − 2 ≡ 0 (mod 127)

which shows that 127 is indeed a prime number.

The proof of the Lucas Lehmer test uses a clever interplay of quadratic
integers and elementary group theory. The main tool in the test is the ring
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R = Z[
√

3] consisting of quadratic numbers a + b
√

3 where a and b are
integers. Recall that

a+ b
√

3 ≡ c+ d
√

3 (mod p)

if a ≡ c (mod p) and b ≡ d (mod p). The set of classes modulo p is denoted
by R/pR. It is also a ring with respect to modular addition and multiplica-
tion. Clearly, the order of R/pR is p2. In particular, the order of the group
of invertible elements (R/pR)× is strictly less than p2.

Let α = 2 +
√

3 and β = 2 −
√

3. Then αβ = 1, so α is an invertible
element in the ring R. In particular, α is invertible when considered as an
element of R/pR for any prime p. Define a sequence of numbers by

tn = α2n−1
+ β2

n−1
.

We claim that sn = tn. First of all, t1 = α + β = 4 = s1. Thus, in order
to show that tn = sn, we need to show that tn satisfy the same recursive
relation as sn. This is not difficult at all. Since αβ = 1,

t2n − 2 = (α2n−1
+ β2

n−1
)2 − 2 = α2n + β2

n
= tn+1,

as desired.

We can now give a proof of the test in one direction: if s`−1 is divisible
by M` then M` is prime. The other direction, as well as a more conceptual
approach to the Lucas - Lehmer test, will be given in the chapter on Qua-
dratic Reciprocity. The proof is by contradiction. Assume that M` divides
s`−1 but M` is not prime. Then there exists a factor p of M` such that
p ≤
√
M`. Since p divides M` and M` divides s`−1, it follows that p divides

s`−1:

α2`−2
+ β2

`−2 ≡ 0 (mod p).

We shall manipulate this congruence as follows. First, subtract β2
`−2

from
both sides to obtain

α2`−2 ≡ −β2`−2
(mod p).

Second, multiply both sides by α2`−2
and use αβ = 1 to obtain

α2`−1 ≡ −1 (mod p).

Finally, as the last step, square both sides to obtain

α2` ≡ 1 (mod p).

The last two congruences imply (as it will be explained in a moment)
that the order of α in (R/pR)× is precisely 2` = M`+ 1. However, the order
of (R/pR)× is less than p2. Since p2 ≤ M`, by our choice of p, it follows
that the order of α is greater than the order of the group (R/pR)×. This is
a contradiction. Hence M` is prime.

So why is the order of α precisely 2`? To answer this question we need
the following general principle: If g is an element of order k in a group G
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then gn = 1 precisely when k divides n. This is rather easy to see, since
n = qk + r with 0 ≤ r < k, and

1 = gn = gqk+r = (gk)q · gr = gr.

Since the order of g is k, gr = 1 is possible only if r = 0, which means that
k divides n. This principle can be illustrated using the clock arithmetic.
It takes a minimum of 12 hours for clock handles to return to the same
position. Moreover, if the handles return to the same position after n hours,
then n is a multiple of 12.

Therefore, if the order of α is strictly less than 2`, then it would be a
proper divisor of 2`, and therefore a divisor of 2`−1. This would imply that

α2`−1 ≡ 1 (mod p),

a contradiction, since α2`−1 ≡ −1 (mod p) and 1 6≡ −1 (mod p) since p is
odd.

Exercises

1) Note that the number s6 has 19 digits, so it does not fit on the display of
probably any calculator. So how do we calculate it without any sophisticated
software application? Here is a trick. Write s5 as

1416317954 = 14163× 105 + 17954.

Thus, the square of s5 is

141632 × 1010 + 2 · 14163 · 17954× 105 + 179542

which can be calculated on any calculator with 10 digits. Use this trick
(twice) to calculate s7.

2) Use the Lucas-Lehmer test to show that the following Mersenne numbers
are prime:

a) M19

b) M31

3) Use the Lucas-Lehmer test to show that the following Mersenne numbers
are not prime:

a) M11.
b) M23.





CHAPTER 5

Roots

1. Roots

Let m be a positive integer. In this section we discuss solutions of the
equation

xk ≡ a (mod m)

under the assumption that a is relatively prime to m. In other words, we
would like to compute k

√
a, the k-th root of a modulo m. We start with an

example

x3 ≡ 2 (mod m)

and m = 5 or 7. Since 5 and 7 are small we can simply list all cubes modulo
5 and modulo 7.

Cubes modulo 5:

x 1 2 3 4
x3 1 3 2 4

Cubes modulo 7:

x 1 2 3 4 5 6
x3 1 1 6 1 6 6

The first table shows that 3 is a cube root of 2 modulo 5. The second
table shows that a cube root of 2 does not exist modulo 7. The tables show
that every non-zero element modulo 5 has a unique cube root, while modulo
7 only two (1 and 6) out of six elements have a cube root. Moreover, the
equations

x3 ≡ 1 (mod 7) and x3 ≡ 6 (mod 7)

have three solutions, each. In other words, the mapping x 7→ x3 is one to
one modulo 5 and three to one modulo 7.

Now let us move to the general case. If the map x 7→ xk from (Z/mZ)×

to (Z/mZ)× is one to one, then xk ≡ a (mod m) has a unique solution for
every non-zero a. A criterion, when this happens, is given by the following
proposition.

67
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Proposition 19. Let G be a finite group of order n. Let k be a positive
integer relatively prime to n. Recall that, by the fundamental theorem of
arithmetic, there exist integers u and v such that ku+ nv = 1. Then

x = au

is the unique solution of the equation xk = a, for every a in G. In particular,
the map x 7→ xk from G to G is one to one and onto.

Proof. If we can show that the map x 7→ xk is onto then it is auto-
matically one to one, since G is finite. In other words, if we can show that
for every a in G the equation xk = a has at least one solution then the
solution is necessarily unique. Therefore, it remains to check that x = au is
a solution. That is easy,

xk = (au)k = aku = a1−nv = a · a−nv = a · (an)−v = a.

In the last step we used that an = e, by the theorem of Lagrange. The
proposition is proved. �

This proposition can be at once applied to the group G = (Z/mZ)×.
The order of this group is given by the Euler’s function ϕ(m). For example,
if m = 5 then ϕ(5) = 4, which is relatively prime to k = 3, and the map
x 7→ x3 is one-to-one. In general, if k is relatively prime to ϕ(m) then

xk ≡ a (mod m)

has a unique solution for every a relatively prime to m. Moreover, the
solution of the equation is given by

x ≡ au (mod m)

where u is an integer such that uk + vϕ(m) = 1. In other words, u = 1/k

modulo ϕ(m), so our solution can be thought of as a
1
k . Going back to our

example, the solution of

x3 ≡ 2 (mod 5)

is 2u where u is the multiplicative inverse of 3 modulo ϕ(5) = 4. Since
3 · 3 ≡ 1 (mod 4), it follows that 23 ≡ 3 (mod 5) is the solution of original
equation, as we originally observed by writing down all cubes modulo 5.

Of course, having developed a method of calculating roots, we can be
more ambitious and solve some more complicated equations. Consider, for
example,

x7 ≡ 7 (mod 23).

Here 23 is prime, so ϕ(23) = 22. Since gcd(22, 7) = 1 there is precisely one
solution. The multiplicative inverse of 7 modulo 22 is 19 since

7 · 19− 6 · 22 = 1
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thus the solution of the equation is 719 which can be efficiently computed
using the method of successive squaring: We first calculate (modulo 23) the
successive squares

72, (72)2 = 74, ((72)2)2 = 78, . . .

and then combine these powers to obtain 719. This step uses a binary
expansion of 19. Recall that the binary notation for 19 is 10011, which
means that

19 = 1 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 1 · 20 = 16 + 2 + 1.

This implies that
719 = 716 · 72 · 7.

Summarizing, in order to calculate 719 modulo 23 we first square suc-

cessively 7 modulo 23 up to 72
4

modulo 23:

7 ≡ 7 (mod 23)
72 ≡ 3 (mod 23)
74 ≡ 9 (mod 23)
78 ≡ 12 (mod 23)

716 ≡ 6 (mod 23)

and then multiply

719 = 716 · 72 · 7 ≡ 6 · 3 · 7 ≡ 11 (mod 23).

This completes the calculation. The 7-th root of 7 modulo 23 is 11.

The method of successive squares is a very efficient method to calculate
powers. In our example, it took four consecutive squaring and then two
additional multiplications to compute 719, instead of 18 multiplications 7 ·
7 · . . . · 7. A general estimate of this method can be derived as follows. Since

n = 2log2(n),

we need first to calculate approximately log2(n) consecutive squares x2,
x4 = (x2)2, . . . and then multiply some of them according to the binary
expansion of n. This gives less than 2 log2(n) operations in all as opposed
to n− 1 multiplications x · x · . . . · x.

Of course, so far, we have completely ignored the case when k is not
relatively prime to ϕ(m). This case is much more difficult. For example,
consider the case when m = p is an odd prime number and k = 2. Then the
map x 7→ x2 is two-to-one, since x2 = (−x)2, so the equation

x2 ≡ a (mod p)

will have two solutions for (p− 1)/2 possible a and no solution for the other
(p− 1)/2 choices for a. The answer to the question whether, for a given a,
the equation has a solution or not is given by the Quadratic Reciprocity.

Exercises
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1) Using the method of successive squaring compute 5143 modulo 1979.

2) Using the method of successive squaring compute 2143 modulo 1979.

3) Solve
a) x11 ≡ 13 (mod 35).
b) x7 ≡ 11 (mod 63).
c) x5 ≡ 3 (mod 64).

2. Property of the Euler Function

Recall that the Euler function ϕ(n) is defined as the number of integers
k, 1 ≤ k ≤ n, relatively prime to n. In this section we want to establish the
following formula: ∑

d|n

ϕ(d) = n

where the sum is over all divisors d of n. For example, if n = 15 then the
divisors are 1, 3, 5 and 15 and

ϕ(1) + ϕ(3) + ϕ(5) + ϕ(15) = 1 + 2 + 4 + 8 = 15.

This equality is not difficult to prove. If k is an integer between 1 and n
then gcd(k, n) is a divisor of n. We can partition all integers k between 1
and n into disjoint subsets as follows. For every divisor d of n let Sd be the
set of all integers k between 1 and n such that gcd(k, n) = d. For example,
if n = 15, then we have 4 divisors, 1, 3, 5, 15, and four subsets given by the
following table:

gcd(k, 15) k
1 1, 2, 4, 7, 8, 11, 13, 14
3 3, 6, 9, 12
5 5, 10
15 15

Since the union of all Sd contains all integers from 1 to n, we have∑
d|n

#{1 ≤ k ≤ n | gcd(k, n) = d} = n.

Our next step is to understand the cardinality of Sd. For example, let
n = 60 and d = 4. If gcd(k, 60) = 4 then k is a multiple of 4. The multiples
of 4 between 1 and 60 are 4 · l where 1 ≤ l ≤ 15:

{4, 4 ·2, 4 ·3, 4 ·4, 4 ·5, 4 ·6, 4 ·7, 4 ·8, 4 ·9, 4 ·10, 4 ·11, 4 ·12, 4 ·13, 4 ·14}.

Next, gcd(4l, 60) = 4 if and only if gcd(l, 604 ) = gcd(l, 15) = 1. It follows
that

S4 = {4, 4 · 2, 4 · 4, 4 · 7, 4 · 8, 4 · 11, 4 · 13, 4 · 14},
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that is, the set S4 consists of integers 4 · l where 1 ≤ l ≤ 15 and l is relatively
prime to 15. Thus, there are ϕ(15) elements in S4. This works in general.
If d is a divisor of n, then the set Sd consists of integers d · l where

1 ≤ l ≤ n

d

and l is relatively prime to n
d . It follows that the cardinality of Sd is ϕ(n/d).

Summarizing, we have partitioned the integers between 1 and n into the
subsets Sd parameterized by the divisors d of n. Each subset Sd has ϕ(n/d)
elements. Adding the cardinalities of all Sd gives n:

Σd|nϕ
(n
d

)
= n.

This is what we wanted to prove. Indeed, if

d1, d2, . . . , dm

are all divisors of n, then
n

d1
,
n

d2
, . . . ,

n

dm
are again all divisors of n. In particular,

Σd|nϕ
(n
d

)
= Σd|nϕ(d)

and, therefore, for every integer n

n = Σd|nϕ(d).

Exercises

1) Let p be a prime and n = pk. By a direct calculation (compute all terms)
check the formula ∑

d|n

ϕ(d) = n.

3. Primitive roots

Let F be any field. An element ζ in F is called an n-th root of 1 if
ζn = 1. The set of all n-th roots of 1 in F is denoted by µn(F ) or simply
µn. It is a subgroup of F×. Note that the order of ζ ∈ µn divides n, but is
not necessarily equal to n. For example, 1 is an n-th root of 1 for every n,
but the order of 1 is one.

As the first result in this section, we show that the number of n-th roots
of 1 in the field F is always less than or equal to n. To that end, note that
n-th roots of 1 are precisely the roots of the polynomial equation

xn − 1 = 0.
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As you probably know, a polynomial P (x) = xn + an−1x
n−1 + . . . + a0 of

degree n with coefficients in F cannot have more than n roots. Indeed, if
z1, . . . , zn are n roots of P (x) then P (x) can be factored as

P (x) = (x− z1) · . . . · (x− zn).

Let ζ be a root of P . Then

P (ζ) = (ζ − z1) · . . . · (ζ − zn) = 0.

Since F is a field and has no zero divisors, one factor ζ − zi must be equal
to 0. This implies that ζ = zi i.e. any root is equal to one of the n roots
z1, . . . , zn. In particular, the polynomial xn − 1 cannot have more than n
roots.

For example, if F = C and n = 4 then x4 − 1 can be factored out as
follows:

x4 − 1 = (x2 − 1)(x2 + 1) = (x− 1)(x+ 1)(x− i)(x+ i).

This shows that 1,−1, i,−i are the four, 4-th roots of 1 in C. The order of
−1 is 2, while the orders of i and −i are 4. An n-th root of 1 of order n is
called a primitive n-th root of one. For example, i and −i are primitive 4-th
roots of 1. Every root of 1 is primitive for some n. Here is a table for small
degree n together with the corresponding primitive roots:

n primitive roots
1 1
2 −1
4 i,−i

An importance of primitive roots is in the following. If ζ is a primitive
n-th root of 1 then the powers

1, ζ, ζ2, . . . , ζn−1

are all distinct and also n-th roots of 1. In particular, any n-th root of 1 is
a power of ζ. In other words, the group µn is cyclic of order n. Take, for
example, i. Then the first four powers yield all complex 4-th roots of 1:

i0 = 1, i1 = i, i2 = −1 and i3 = −1,

This brings us to the following question. Fix a field F and a positive integer
n. Are there any primitive n-th roots of 1 in F , and how may primitive
roots of order n can be in a field? This is answered nicely as follows.

Proposition 20. Let n be a positive integer. Assume that the equation
xn − 1 = 0 has n different solutions in F . Then ϕ(n) of them are primitive
n-th roots of one, where ϕ is the Euler function. In particular, µn is a cyclic
group of order n.
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Proof. The proof of this statement is by mathematical induction. If
n = 1 then 1 is the unique solution of x−1 = 0. It is a primitive root. Since
ϕ(1) = 1, the proposition holds for n = 1. We shall derive the statement for
a general n assuming that it holds for all d < n. Let ζ be an n-th root of
1. If ζ is not primitive then it satisfies an equation xd − 1 = 0 for a proper
divisor d of n. Write n = d · l. Then

xn − 1 = (xd − 1)(xd(l−1) + xd(l−2) + . . .+ xd + 1).

It follows that precisely d of the n solutions of xn − 1 = 0 are solutions of
xd − 1 = 0. By the induction assumption, since d < n, ϕ(d) of them are
primitive d-th roots of 1. Thus, the total number of non-primitive n-th roots
is ∑

d|n,d6=n

ϕ(d),

where the sum is taken over all divisors d of n different from n. It follows
that the number of primitive n-th roots of 1 is

n−
∑

d|n,d 6=n

ϕ(d).

Since n =
∑

d|n ϕ(d), by the formula for Euler’s function, it follows that the

number of primitive n-th roots is ϕ(n). The proposition is proved. �

Example: If F = C, the field of complex numbers, then n-th roots of 1 are

e2πik/n = cos
2πk

n
+ i sin

2πk

n
= (e2πi/n)k

for k = 1, 2, . . . , n. They form a regular n-gon with vertices on the unit
circle. The root e2πik/n is primitive if and only if k is relatively prime to n.
Thus we have (obviously) ϕ(n) primitive roots here. For example, if n = 8,
then

e2πi/8 = cos
π

4
+ i sin

π

4
=

1 + i√
2
.

The following figure represents complex 8-th roots of 1. The primitive are
represented by blank circles.
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We now move to finite fields. By Fermat’s Little Theorem xp−1 = 1 for
every non-zero element x in Z/pZ. In other words, all non-zero elements
are roots of one! Thus we have exactly p − 1 solutions of the equation
xp−1−1 = 0. Our results imply that ϕ(p−1) elements in Z/pZ are primitive
or, in the group language, ϕ(p − 1) elements in the multiplicative group
(Z/pZ)× have order p − 1. Let us see this on the example p = 11. We list
all non-zero elements and their orders:

x 1 2 3 4 5 6 7 8 9 10
o(x) 1 10 5 5 5 10 10 10 5 2

The table shows that there are 4 = ϕ(10) elements of order 10, 4 = ϕ(5) of
order 5, 1 = ϕ(2) element of order 2 and 1 = ϕ(1) element of order 1. As
we now know, this is by no means an accident.

Exercises

1) Let F be a field. Show that the set of all n-th roots of 1 is a subgroup of
F×.

2) Let ζ be a primitive n-th root of 1. Then 1, ζ, . . . ζn−1 are all n-th roots
of 1. Let Sn = 1 + ζ + · · · ζn−1 be the sum of all n-th roots of 1. Show that
Sn = 0 using the factorization

xn − 1 = (x− 1)(x− ζ) · . . . · (x− ζn−1).

Hint: Sn shows up as a coefficient of xn − 1.
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3) Consider the finite field Z/31Z. Check that 3 is a primitive root by
working out all powers. Deduce from this, quickly, which elements are sixth
roots of 1 (not necessarily primitive). Add them up modulo 31. What
number should you get?

4. Discrete logarithm

The fact that Z/pZ contains a primitive root of order p− 1 can be used
to define a discrete logarithm for finite fields. Take, for example, p = 11.
Since 2 is a primitive root modulo 11, its powers

2, 22, . . . , 29, 210 = 1

give all non-zero elements modulo 11. A quick calculation shows that

I 1 2 3 4 5 6 7 8 9 10

2I 2 4 8 5 10 9 7 3 6 1

If x = 2I we say that I is a discrete logarithm of x modulo 11, with respect
to the base 2. The number I = I(x) is called also the index of x. Note
that I(x) is represented by an integer modulo 10 = ϕ(11), by Fermat’s little
theorem. More generally, if g is a primitive root modulo p then any element
x in (Z/pZ)× can be written as

x = gI(x)

for a unique element I(x) is in Z/(p − 1)Z. In other words, we have an
identification

I : (Z/pZ)× → Z/(p− 1)Z.
But this is not all. Just as the usual logarithmic function enjoys the property
log(xy) = log(x) + log(y) we also have

I(xy) = I(x) + I(y)

in this case. This is easy to check. Indeed, given two elements x = gI(x) and
y = gI(y) in (Z/pZ)×, then

xy = gI(x)gI(y) = gI(x)+I(y).

Since xy is also equal to gI(xy), by the definition of I, it follows that I(xy) =
I(x) + I(y), as claimed.

The map I is an example of a group homomorphism since it transfers
the group operation from one group (in this case (Z/pZ)×) to another group
(in this case Z/(p−1)Z). Here is a formal definition of the group homomor-
phism.

Definition 21. Let G1 and G2 be two groups. A map h : G1 → G2 is
called a (group) homomorphism if

h(x · y) = h(x) · h(y)
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for any two elements x and y in G1. (In order to keep the notation simple,
we use · for the group law in each group.) Moreover, the map h is called an
isomorphism if it is one to one and onto.

Any two isomorphic group are indistinguishable, as far as their “group
properties” are concerned. For example, an element g in G1 has the order
n if and only h(g) in G2 has the order n. Thus, the discrete logarithm can
be used to replace the modular multiplication by the modular addition in
problems. For example, assume that we want to solve a congruence

4x ≡ 7 (mod 11).

We can write 4 = 2I(4), x = 2I(x) and 7 = 2I(7). Substituting in the
congruence gives

2I(4)2I(x) ≡ 2I(7) (mod 11).

Since 2I(4)2I(x) = 2I(4)+I(x), and the discrete logarithm is determined mod-
ulo 10 = ϕ(11), we can replace the original congruence with

I(4) + I(x) ≡ I(7) (mod 10).

This can be solved quickly since I(4) = 2 and I(7) = 7, from the table. It
follows that I(x) = 5 and, therefore, x = 10.

We know that there are primitive roots modulo any prime p. But, given
a prime p, which integers modulo p are primitive roots? There seems no
easy way to answer this question. Similarly, we can ask for which primes is
2 a primitive root? Or, for which primes is 3 a primitive root? Again, these
questions have no known answer. Due to the lack of any better ideas we
simply list the first primitive root g modulo p for primes under 100:

g p

2 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83
3 7, 17, 31, 43, 79, 89
5 23, 47, 73, 97
6 41
7 71

Exercises

1) Use the discrete logarithm modulo 11 with base 2 to solve the following
congruence:

7x ≡ 5 (mod 11).

Verify that the solution is correct.

2) Solve, using the discrete logarithm with base 2,

4x2 ≡ 9 (mod 11).
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3) The number 2 is a primitive root modulo 19. Compute the powers 2I for
I = 1, 2, . . . , 18, 19 to obtain the table for the discrete logarithm with base
2 for integers modulo 19. Then use the table to solve the equation

x5 ≡ 7 (mod 19).

5. Cyclotomic Polynomials

Let F be a field, such as the field of complex numbers C or a finite field
Z/pZ. A number ζ in F is a primitive n-th root of 1 if ζn = 1 and

ζd 6= 1

for all proper divisors d of n. For example, the complex number i is a
primitive fourth root of 1 since i4 = 1 and i2 6= 1. In the previous section
we showed that if the equation xn − 1 = 0 has n solutions in a field, then
ϕ(n) of them are primitive n-th roots of 1. For example, if F = C then the
solutions of xn − 1 = 0 are

ζk = e2πik/n = cos(2πk/n) + i sin(2πk/n)

for k = 1, . . . , n and ζk is primitive if and only if k is relatively prime to n.

Using the complex n-th roots of 1, we define (so-called) n-th cyclotomic
polynomial as a product

Φn(x) =
∏

gcd(k,n)=1

(x− ζk).

Clearly, by design, the degree of this polynomial is ϕ(n). Its roots are
precisely the primitive n-th roots of 1. Since any n-th root of 1 is primitive
d-th root of 1 for some divisor d of n, we have a factorization

xn − 1 =
∏
d|n

Φd(x).

A remarkable fact, which we shall verify in a moment, is that Φn(x) have
integer coefficients. Before we discuss how to calculate the cyclotomic poly-
nomials, here is a list of the first six:

n Φn

1 x− 1
2 x+ 1
3 x2 + x+ 1
4 x2 + 1
5 x4 + x3 + x2 + x+ 1
6 x2 − x+ 1

It would be certainly very cumbersome to figure out the coefficients of
the cyclotomic polynomials from our definition. However, the cyclotomic



78 5. ROOTS

polynomial can be efficiently calculated in the following (inductive) fashion.
If Φd(x) are known for all proper divisors d of n then Φn(x) can be computed
by dividing xn − 1 by the product∏

d|n,d 6=n

Φd(x).

In practice this product can be easily factored out using standard tricks of
algebra. For example, assume we want to compute Φ10. The proper divisors
of 10 are 1, 2, and 5. The cyclotomic polynomials Φ1(x), Φ2(x) and Φ5(x)
are given in the above table. Since

x10 − 1 = (x5 − 1)(x5 + 1)

and {
x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1)

x5 + 1 = (x+ 1)(x4 − x3 + x2 − x+ 1)

we can factor

x10 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1)(x+ 1)(x4 − x3 + x2 − x+ 1).

We recognize the first three factors as Φ1(x), Φ5(x) and Φ2(x). Therefore,
the last factor must be

Φ10(x) = x4 − x3 + x2 − x+ 1.

The inductive procedure also explains why the coefficients of Φn(x) are in-
tegers. Recall that, if f(x) and g(x) are two polynomials with integer coef-
ficients then there exist two polynomials q(x) and r(x) such that

f(x) = q(x)g(x) + r(x)

where r = 0 or the degree of r is strictly less than the degree of g(x).
The coefficients of q(x) may be rational numbers. However, if the leading
coefficient of g(x) is 1 (such polynomial is called monic) then q(x) has integer
coefficients. You can easily convince yourself to this fact by working out
an example of synthetic division. In any case, the quotient of two monic
polynomials is again monic, and this shows that Φn(x) is monic since it is a
quotient of xn − 1 by a monic polynomial.

We finish with the following remark. Originally, we defined the cyclo-
tomic polynomials using complex roots. However, the inductive procedure
used to compute the polynomials starts with Φ1(x) = x − 1, then x2 − 1
is divided by Φ1(x) to get Φ2(x) = x + 1 and so on, never uses any com-
plex numbers whatsoever. It follows that the cyclotomic polynomials are
completely independent of the field. For example, consider the field Z/11Z.
Then the orders of non-zero elements are

x 1 2 3 4 5 6 7 8 9 10
o(x) 1 10 5 5 5 10 10 10 5 2
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In particular, 2, 6, 7, and 8 are the four (4 = ϕ(10)) primitive 10-th
roots of 1. We can calculate Φ10(x) using these roots. Multiplying out

(x− 2)(x− 6)(x− 7)(x− 8) = x4 − 23x3 + 188x2 − 628x+ 672

and then reducing modulo 11 gives

x4 − 23x3 + 188x2 − 628x+ 672 ≡ x4 − x3 + x2 − x+ 1 (mod 11)

which is Φ10(x), as worked out before.

Exercises

1) Find all complex roots of the polynomial x6 − 1, by factoring it into a
product of cyclotomic polynomials

x6 − 1 = Φ1(x)Φ2(x)Φ3(x)Φ6(x)

and then using the quadratic formula to find the roots of Φ3(x) and Φ6(x).
Graph the solutions.
2) All five complex 6-th roots of 1 form a regular hexagon in the plane of
complex numbers. The following nice geometric argument shows that S6,
the sum of all 6-th roots of 1, is 0: The angle between any two consecutive
6-th roots is 60 degrees. Thus, if we rotate the hexagon by 60 degrees we get
back the same hexagon. This shows that the number S6 has to be invariant
under the rotation by 60 degrees. But there are no such complex number
except 0, so S6 = 0.

In this exercise you will show that the same argument works for any
field. Let ζ be a primitive n-th root of 1. Then all n-th roots of 1 are
1, ζ, ζ2, . . . , ζn−1. Put

Sn = 1 + ζ + ζ2 + . . .+ ζn−1.

Show that ζ ·Sn = Sn. Deduce form this that Sn = 0. (Notice that, if ζ is a
complex number of norm 1, the multiplication by ζ is the same as rotation
by the argument of ζ. )

3) Calculate Φ12 in two ways:

a) Factor x12− 1, then use Φd(x) for all proper divisors d of 12, given in
the table above.

b) Compute primitive roots modulo 13, then expand Φ12(x) modulo 13.

4) Factor x9 − 1 = Φ1(x)Φ3(x)Φ9(x).

5) Calculate Φ8(x) in two ways:

a) Factor x8 − 1 into a product Φ1(x)Φ2(x)Φ4(x)Φ8(x).

b) Calculate Φ8 in the field of F17. The primitive 8-th roots of 1 modulo
17 are 2, 8, 9 and 15.

6) Let p be a prime. Find an explicit expression for Φpn(x).
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7) This exercise involves some work. Compute Φ15(x), Φ21(x) and Φ35(x).

8) Compute Φ105(x). This is the first cyclotomic polynomial with a coeffi-
cient different from −1, 0 or 1.



CHAPTER 6

Quadratic Reciprocity

1. Squares modulo p

It this section we study the important problem of deciding whether an
integer a is a square modulo p or, in other words, we would like to determine
if the equation

x2 ≡ a (mod p)

has a solution. Here p is an odd prime and, therefore, −1 is not congruent
to 1 modulo p.

Before attacking the problem, let us revisit what happens for the group
of non-zero real numbers R× = R \ {0}, In this case the mapping x 7→ x2 is
two-to-one, and the image is the set of all positive real numbers. Thus,

x2 − a = 0

x2 + a = 0

have 2 and 0 solutions, respectively, for every positive real number a. A
similar phenomenon occurs with (Z/pZ)×. Consider, for example, p = 11.
All squares modulo 11 are tabulated in the following table:

a 1 2 3 4 5 6 7 8 9 10
a2 1 4 9 5 3 3 5 9 4 1

Thus, If p = 11 then the squares are: 1,3,4,5,9. These numbers are
also called quadratic residues since they are the residues modulo p of integer
squares. The map x 7→ x2 is two to one, as in the case of non-zero real
numbers. The same happens for any prime number p. Indeed, if a and b are
two non-zero elements in Z/pZ such that a2 = b2 then

0 = a2 − b2 = (a− b)(a+ b).

Since there are non-zero divisors modulo p, one of the two factors has to be
0. It follows that

a = −b or a = b.

This shows that for every odd prime p there are (p− 1)/2 squares. Here
is another example with p = 13.

81
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a 1 2 3 4 5 6 7 8 9 10 11 12
a2 1 4 9 3 12 10 10 12 3 9 4 1

So, if p = 13, the squares are: 1,3,4,9,10,12 which makes 13−1
2 = 6 ele-

ments. The point of these examples is that, unlike the case of real numbers,
it is not clear at all which integers are squares modulo p. For example, if
we are given a prime p = 131, is 71 is a square mod 131? An answer to
this question is given by Quadratic Reciprocity, a deep discovery of Gauss.
The main goal of this Chapter is to state and partially prove the Quadratic
Reciprocity.

As the first step in understanding this problem we shall make use of
primitive roots modulo p.

Recall that there exists an element g in (Z/pZ)× of order p−1 (primitive
root). Then every a ∈ (Z/pZ)× = {1, 2, . . . , p− 1} can be written as

a = gI , for I = 1, . . . , p− 1.

The integer I is the index of a with respect to g. Again, recall the example
of p = 11 and g = 2:

I 1 2 3 4 5 6 7 8 9 10

2I 2 4 8 5 10 9 7 3 6 1

Note that the indices of squares {1, 4, 9, 3, 5} are even numbers. This is
true in general. Indeed, if I is even then

gI = (gI/2)2

so gI is a square. Since there are p−1
2 even indices, which is also the number

of all squares, these account for all squares. Thus, if p is odd prime and g a
primitive root of order p− 1,

1, g2, g4, . . . , gp−3 are squares, and

g, g3, g5, . . . , gp−2 are non- squares

Now is a good time to introduce the Legendre Symbol, which is a nota-
tion introduced by Adrien-Marie Legendre. The symbol is a function(

·
p

)
: (Z/pZ)× → {±1}

defined as follows. If n is an element in (Z/pZ)× or, simply, an integer
relatively prime to p then(

n

p

)
=

{
1 if n is a square modulo p and

−1 if n is not a square modulo p.
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Proposition 22. Euler’s criterion. The Legendre symbol can be com-
puted using the following criterion

a
p−1
2 ≡

(
a

p

)
(mod p).

Proof. Let g be a primitive root modulo p. Then a is congruent to gI

for some integer I, and

a
p−1
2 ≡ (gI)

(p−1)
2 = (g

p−1
2 )I (mod p).

Since the order of g is p− 1, the order of g
p−1
2 is precisely two. This implies

that g
p−1
2 = −1. Thus

a
p−1
2 ≡ (−1)I (mod p).

If a is a square then I is even, and (−1)I = 1. If a is not a square, then I
is odd and (−1)I = −1. The proposition is proved. �

We now derive two important consequences of Euler’s criterion. We start
with a special case of the Quadratic Reciprocity.

Proposition 23. Let p be an odd prime. Then −1 is a square modulo
p if and only if p ≡ 1 (mod 4).

Proof. By the Euler’s criterion,(
−1

p

)
= (−1)

p−1
2 .

If p ≡ 1 (mod 4) or, equivalently, p = 4k + 1 then

(−1)
p−1
2 = (−1)2k = 1.

Thus −1 is a square if p ≡ 1 (mod 4). On the other hand, if p ≡ 3 (mod 4)
or, equivalently, p = 4k + 3 then

(−1)
p−1
2 = (−1)2k+1 = −1.

Thus −1 is not a square if p ≡ 3 (mod 4). �

Another importance of the Legendre symbol lies in the fact that it is
multiplicative:

Proposition 24. For any two a, b ∈ (Z/pZ)×(
ab

p

)
=

(
a

p

)(
b

p

)
.

Proof. This is easy to verify using the Euler’s criterion criterion. In-
deed, (

ab

p

)
= (ab)

p−1
2 = a

p−1
2 b

p−1
2 =

(
a

p

)(
b

p

)
.

�
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The multiplicativity of the Legendre symbol implies that a product of
two squares in (Z/pZ)× is a square (obvious), a product of a square and a
non-square is a non-square and, finally, a product of two non-squares is a
square, as tabulated below:

· S N
S S N
N N S

The Legendre symbol is analogous to the sign function for non-zero real
numbers:

sgn(x) =

{
1 if x > 0 ⇐⇒ x is a square

−1 if x < 0 ⇐⇒ x is not a square

A well known property of the sign function is

sgn(xy) = sgn(x) · sgn(y)

which states that the sign of a product of two numbers is the product of
signs, as we have learned in the elementary school.

The Legendre symbol and the sign function are group homomorphisms.
The Legendre symbol is a group homomorphism from (Z/pZ)× to {±1},
and the sign function is a group homomorphism from R× to {±1}. In both
cases, of course, {±1} is considered as a group with the multiplication table

· 1 -1
1 1 -1

-1 -1 1

Exercises

1) 6 is a primitive root modulo 41. Using the method of consecutive squaring,
calculate

6
41−1

2 = 620

modulo 41. The answer should be congruent to −1 modulo 41.

2) Use Euler’s criterion to determine if the following are squares:
a) 2 modulo 31.
b) 3 modulo 31.
c) 7 modulo 29.

3) Let n be a positive integer. Let p be a prime divisor of n2 + 1. Prove
that p ≡ 1 (mod 4). Hint: Use(

n2

p

)
=

(
−1

p

)
.
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4) Use the previous exercise to prove that there are infinitely many primes
p ≡ 1 (mod 4).

5) Let GL2(C) be the group of 2×2 invertible matrices with complex coeffi-
cients. A well known property of determinant tells us that the determinant
is a homomorphism from GL2(C) to C×. State that property.

2. Fields of order p2

Let p be a prime. In this section we show that there is only one field of
order p2. This is a consequence of existence of primitive roots, Proposition
20.

Recall that the characteristic of a finite field F is the smallest number `
(necesarily a prime) such that 1+1+ · · ·+1 = 0 where 1 is added `-times. In
other words, ` is the order of 1 in F , considered as a group with respect to
the addition. By the theorem of Lagrange, the order of F must be divisible
by `. In particular, if the order of F is pn, then the characteristic of F is
p. The field Fp is a subfield of F where a ∈ Fp, an integer modulo p, is
identified with

1 + 1 + · · ·+ 1 ∈ F

where 1 is added a times. The Frobenius map Fr(x) = xp, rising every
element x in F to its p-th power, has some special properties. It is additive,

Fr(x+ y) = (x+ y)p = xp + yp = Fr(x) + Fr(y)

for all x and y in F , and Fr(x) = x if and only if x is in the subfield Fp ⊆ F .
Indeed, elements x ∈ Fp satisfy xp = x, by the Fermat’s Little Theorem,
and thus account for all p solutions of the equation xp = x.

Existence of fields of order p2. Assume first that p 6= 2. We previously
constructed fields of order p2. We briefly review the construction. The map
x 7→ x2 from F×p to F×p is 2 to 1. In particular, there is d in F×p which is not
a square. Let

Fp[
√
d] = {x+ y

√
d | x, y ∈ Fp}.

The addition in Fp[
√
d] is defined by

(x+ y
√
d) + (u+ v

√
d) = (x+ u) + (y + v)

√
d

and the multiplication in Fp[
√
d] is defined by

(x+ y
√
d) · (u+ v

√
d) = (xu+ yvd) + (xv + yu)

√
d.

One shows that Fp[
√
d] is a field where 0+0

√
d is the identity with respect to

the addition and 1 + 0
√
d is the identity with respect to the multiplication.

Most of the field axioms are easy to verify. The hardest part is to show that
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every z 6= 0 + 0
√
d has a multiplicative inverse. The multiplicative inverse

of z = x+ y
√
d is

x

x2 − dy2
− y

x2 − dy2
√
d.

Note that the inverse is well defined as long as x2−dy2 6= 0. If x2−dy2 = 0
and y 6= 0 then d = (x/y)2, and this is a contradiction since d is not a
square. Thus, if x2−dy2 = 0 then y = 0. Substituting y = 0 in x2−dy2 = 0
gives x = 0. We have shown that x2− dy2 = 0 implies that z = 0 + 0

√
d. In

other words, z has a multiplicative inverse if z 6= 0 + 0
√
d.

Action of the Frobenius map on Fp[
√
d] can be made very explicit.

Proposition 25. Realize the field Fp2 as the set of numbers a + b
√
d

where a and b are integers considered modulo p. Then Fr(a+b
√
d) = a−b

√
d

or, in terms of congruences,

(a+ b
√
d)p ≡ a− b

√
d (mod p).

Proof. This congruence is not too difficult to check. Since (x+ y)p =
xp + yp in characteristic p, we have

(a+ b
√
d)p ≡ ap + bp(

√
d)p (mod p).

By Fermat’s Little Theorem ap ≡ a (mod p) and bp ≡ b (mod p), so the
congruence can be further rewritten as

ap + bp(
√
d)p ≡ a+ b(

√
d)p (mod p).

It remains to deal with (
√
d)p. Since d is not a square modulo p,

d
p−1
2 ≡ −1 (mod p)

by Euler’s criterion. Thus

(
√
d)p = d

p−1
2 ·
√
d ≡ −

√
d (mod p)

as desired. �

The explicit action of the Frobenius map on Fp[
√
d] gives another proof

that the Frobenius fixes only elements in the subfield Fp. Indeed, if Fr(z) =

z, for z = x+ y
√
d in Fp[

√
d], then the proposition implies that y = 0, i.e. z

is in Fp.

Uniqueness of fields of order p2. Assume that F is a finite field of order
p2 with p odd. We shall show that F can be identified with the field Fp[

√
d].

To that end, consider the multiplicative group F×. The order of F× is

p2 − 1. By the theorem of Lagrange xp
2−1 = 1 for every element x in F×.

By Proposition 20 (existence of primitive roots) ϕ(p2−1) of elements in F×

must be primitive, that is, of order exactly p2−1. Let g be a primitive root,
and define h = gp+1. Since p2−1 = (p+1)(p−1), the order of h is precisely
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p− 1. It follows, by the observation above, that h is a primitive root in F×p .

In particular, there exists an integer I such that d = hI . Put

s = g
p+1
2
I .

This is a well defined element in F since p+ 1 is even. Note that s2 = d. In
particular, s is not contained in the subfield Fp since d is not a square in Fp
by the assumption. Consider a subset of F given by

F ′ = {x+ ys | x, y ∈ Fp}.

We want to show that F ′ = F . To that end it suffices to show that F ′ has
p2 elements. Assume that x+ ys = u+ vs. If y 6= v then we can solve for s:

s =
x− u
v − y

.

This is a contradiction since s is not in Fp. It follows that x+ ys = u+ vs
implies first that y = v and then x = u by canceling ys = vs from both
sides of x + ys = u + vs. Thus different choices for x and y give different
elements in F ′ so F ′ has p2 elements as desired.

We now know that any element in F can be uniquely written as x+ ys
for some x and y in Fp. Multiplying two elements in this expression gives

(x+ ys)(u+ vs) = xu+ (xv + yu)s+ yvs2 = (xu+ yvd) + (xv + yu)s

since s2 = d. Note that this formula is identical to the one for the field
Fp[
√
d]. This shows that we can identify Fp[

√
d] and F by sending x+ y

√
d

in Fp[
√
d] to x+ ys in F .

Summarizing, for any odd integer p we can construct a finite field of
order p2 as Fp[

√
d] by picking a non-square element d in F×p . Any other field

of order p2 can be identified with this field. In other words, there is only
one field of order p2, although there are different ways to write it down.

Now assume that F has 4 elements. Then elements in F× are cube roots
of 1. Thus, if ρ is a cube root different from 1 then F× = {1, ρ, ρ2} and
multiplication table is clearly

· 1 ρ ρ2

1 1 ρ ρ2

ρ ρ ρ2 1
ρ2 ρ2 1 ρ

It remains to show that there is only one way to define addition on F =
{0, 1, ρ, ρ2}. Since

0 = ρ3 − 1 = (ρ− 1)(ρ2 + ρ+ 1)

and ρ 6= 1 it follows that ρ satisfies the quadratic equation ρ2 + ρ + 1 = 0.
Since −1 = 1 in characteristic 2 this equation can be rewritten as 1+ρ = ρ2,
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ρ+ ρ2 = 1 and ρ2 + 1 = ρ. In other words, the fact that ρ is a cube root of
1 forces the following addition table:

+ 0 1 ρ ρ2

0 0 1 ρ ρ2

1 1 0 ρ2 ρ
ρ ρ ρ2 0 1
ρ2 ρ2 1 ρ 0

The diagonal terms are all 0 since x + x = 2 · x = 0 · x = 0 in any field of
characteristic 2. We have shown that any field of order 4 can be identified
with a field consisting of elements {0, 1, ρ, ρ2} with the two operations given
by the two tables above.

The unique field of order p2 is denoted by Fp2 .

Exercises

1) Since −1 = 2 is not a square modulo 3, we can write F9 as F3[i] where
i2 = −1. Write down the multiplication table for 8 non-zero elements in
F3[i]. (For convenience write these elements as a+bi where a, b are −1, 0, 1.)

2) Since the order of F×9 is 8 and ϕ(8) = 4, four elements in F3[i]
× should

be primitive, that is, of order 8. Find them.

3. When is 2 a square modulo p?

We continue studying the problem of characterizing quadratic residues
modulo p. In Proposition 23 it was shown that −1 is a square modulo p if
and only if p ≡ 1 (mod 4). We give another proof of this fact. Assume that
−1 is a square modulo p, that is,

−1 ≡ a2 (mod p)

for some a. This implies that the order of a in the group (Z/pZ)× is 4. Since
the order of (Z/pZ)× is p− 1 it follows, from the theorem of Lagrange, that
4 divides p − 1 or p ≡ 1 (mod 4). Conversely, assume that p ≡ 1 (mod 4).
Let g be a primitive root in (Z/pZ)×. Then

−1 = g
p−1
2 = (g

p−1
4 )2,

hence −1 is a square. Notice the structure of this argument. First, the
theorem of Lagrange is used to show that −1 could be a square only if p ≡ 1
(mod 4). Second, if p ≡ 1 (mod 4) then an explicit construction of a square
root of −1 is given using the primitive root. This sort of thinking is useful
in proving the following case of the Quadratic Reciprocity.

Proposition 26. Let p be an odd prime. Then:



3. WHEN IS 2 A SQUARE MODULO p? 89

(1) 2 is a square modulo p if and only if p ≡ 1, 7 (mod 8).
(2) 2 is not a square modulo p if and only if p ≡ 3, 5 (mod 8).

The proof of this result is based on an observation concerning complex
8-th roots of one. They are powers 1, ζ, . . . , ζ7 where

ζ = exp(
πi

4
) =

1√
2

+
i√
2
.

Notice the appearance of
√

2 here. The root ζ is expressed in terms of
√

2.
Conversely, it is possible to write

√
2 in terms of ζ. Indeed, since

ζ7 = exp(
7πi

4
) =

1√
2
− i√

2
.

it follows that

ζ + ζ7 = 2 · 1√
2

=
√

2.

Now let’s move to finite fields. Consider, for example, Z/17Z. Since
17 ≡ 1 (mod 8), 2 should be a square modulo 17. A square root of 2
modulo 17 can be constructed by following how the real

√
2 is expressed in

terms of the complex 8-th roots of 1. To that end, recall that 3 is a primitive
root modulo 17. In particular, the order of 3 modulo 17 is 16. It follows
that 9 = 32 is a primitive 8-th root modulo 17. By analogy with complex
numbers we consider

9 + 97 ≡ 11 (mod 17).

Then 112 = 121 ≡ 2 (mod 17), thus our construction of a square root of
2 works in this case. The same argument works for all primes p such that
p ≡ 1 (mod 8). However, in order to give a uniform proof of the theorem in
all cases, we must work with the field Fp2 . If p is an odd prime - in fact if p
is any odd number - then

p ≡ 1, 3, 5 or 7 (mod 8).

Thus, since 12 = 1, 32 = 9, 52 = 25 and 72 = 49 are all congruent to 1
modulo 8,

p2 ≡ 1 (mod 8).

It follows that p2 − 1, the order of the multiplicative group of the quadratic
extension Fp2 , is divisible by 8. Next, by the theorem of Lagrange, every

element x in F×
p2

satisfies the equation

xp
2−1 = 1.

Thus, all non-zero elements of Fp2 are roots of 1 and, by Proposition 20

(existence of primitive roots), there is a primitive root g (of order p2 − 1).
In particular,

ζ = g
k(p2−1)

8

is a primitive 8-th roots of 1, and by analogy with complex numbers,

s = ζ + ζ7
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should be a square root of 2. This is not difficult to check. Indeed, squaring
s and using that ζ8 = 1 gives

s2 = ζ2 + 2ζ8 + ζ14 = ζ2 + 2 + ζ6.

Since ζ is a primitive 8-th root of 1, ζ4 is a primitive square root of 1. Hence
ζ4 = −1. Since ζ6 = ζ4 · ζ2 = −ζ2, the first and the last summand in the
above expression for s2 cancel each other out. This shows that s2 = 2 or, in
words, 2 has a square root in the field Fp2 . The question now is whether or
not s belongs to the base field Fp. This is checked by applying the Frobenius,
Fr(s) = sp. Recall that, by Proposition 14, an element s in Fp2 belongs to
Fp if and only if Fr(s) = s.

Let k = 1, 3, 5, 7 be such that p ≡ k (mod 8). Since raising an eight root
of 1 to the p-th power is the same as raising it to the k-th power,

Fr(s) = Fr (ζ) + Fr
(
ζ7
)

= ζk + ζ7k.

The second summand depends only on what 7k is modulo 8. Now if k = 1
then Fr(s) = s, and 2 is a square modulo p. If k = 7 then 7 · 7 ≡ 1 (mod 8)
and Fr(s) = s again, as Frobenius simply switches the two terms. Thus 2 is
a square if p ≡ 1, 7 (mod 8). If k = 5 then 7 · 5 ≡ 11 (mod 8) and

Fr(s) = ζ5 + ζ11 = ζ4(ζ + ζ7) = −(ζ + ζ7) = −s.

A similar argument shows that Fr(s) = −s if k = 3. Thus 2 is a not square
if p ≡ 3, 5 (mod 8). The proposition is proved.

Exercises

1) Notice that 41 ≡ 1 (mod 8). Use 6, as a primitive root modulo 41, to
construct a square root of 2 modulo 41.

2) Notice that 73 ≡ 1 (mod 8). Use 5, as a primitive root modulo 73, to
construct a square root of 2 modulo 73.

3) Recall that

√
2

2
+ i

√
2

2

is a complex primitive 8-th root of 1. Notice how it is constructed from
square roots of 2 and −1. Construct a primitive 8-th root of 1 modulo 17
using 6 and 4 which are square roots of 2 and −1 modulo 17.

4) Does the equation x2 − 6x + 11 = 0 have a solution modulo 131? Hint:
complete to a square, then use quadratic reciprocity.



4. QUADRATIC RECIPROCITY 91

4. Quadratic Reciprocity

Theorem 27. Quadratic Reciprocity. Let p and q be two different odd
primes. Then (

p

q

)(
q

p

)
= (−1)

p−1
2
· q−1

2 .

Note that the sign (−1)
p−1
2
· q−1

2 is −1 only when both primes are con-
gruent to 3 modulo 4. Thus, it is convenient to note that the quadratic
reciprocity can be restated as(

p

q

)
=

(
q

p

)
if p ≡ 1 (mod 4),(

−p
q

)
=

(
q

p

)
if p ≡ 3 (mod 4).

The quadratic reciprocity, combined with the multiplicative property of
the Legendre symbol, can be used to figure out quickly whether an integer
is a quadratic residue. For example, say we want to figure out if 71 is a
square modulo 131. Since 71 and 131 are primes then, using the quadratic
reciprocity, (

71

131

)
= −

(
131

71

)
= −

(
60

71

)
where, for the second equality, we used that 131 ≡ 60 (mod 71). Since
60 = 4 · 3 · 5, by the multiplicativity property of the Legendre’s symbol, we
further have (

71

131

)
= −

(
4

71

)(
3

71

)(
5

71

)
.

Since 4 = 22, the first symbol on the right side is 1. After applying the
quadratic reciprocity to the second and third symbol,(

71

131

)
=

(
71

3

)(
71

5

)
.

Since 71 ≡ 2 (mod 3) is not a square and 71 ≡ 1 (mod 5) is a square, it
follows that 71 is a not square modulo 131.

We shall now give a proof of the quadratic reciprocity in a special case
when one of the primes is 3. In fact, it will be more convenient to work with
−3. The quadratic reciprocity (the second formulation) says that(

−3

p

)
=
(p

3

)
.

In words, −3 is a square modulo p if and only if p is a square modulo 3.
Since p ≡ 1 (mod 3) or p ≡ 2 (mod 3), and 1 is a square modulo 3, while
2 is not, the quadratic reciprocity states that −3 is a square modulo p if
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and only if p ≡ 1 mod 3. We shall now give a proof of this statement using
cube roots of 1. Again, we use complex roots as a guide. Recall that

ζ = exp(
2πi

3
) = −1

2
+

√
−3

2

is a primitive complex cube root of 1. Then

ζ2 = exp(
4πi

3
) = −1

2
−
√
−3

2
.

Hence
ζ − ζ2 =

√
−3.

Thus, the idea is to construct a square root of −3 modulo p using cube roots
of 1. Consider, for example, Z/7Z. Since 23 ≡ 1 (mod 7), 2 is a primitive
cube root of 1 and, by the analogy with complex numbers,

2− 22 ≡ 5 (mod 7)

should be a square root of −3 modulo 7. Indeed 52 ≡ −3 (mod 7). If p ≡ 2
(mod 3) then Fp does not contain cube roots of 1 and we need to use the
larger field Fp2 . Note that

p2 ≡ 1 (mod 3),

for any odd prime p. Let g be a primitive root (of order p2−1) in Fp2 . Then

ζ = g
p2−1

3

is a primitive cube root of 1 and

t = ζ − ζ2

should be a square root of −3. Let us check this. Squaring t and using
ζ3 = 1 gives

t2 = ζ2 − 2ζ3 + ζ4 = ζ2 − 2 + ζ.

Since the sum of all three cube roots is 0 (1 + ζ + ζ2 = 0) it follows that
t2 = −3, as desired. The remaining question is whether t is in Fp. Again, we
use the Frobenius. Let k = 1, 2 be such that p ≡ k (mod 3). Since raising a
cube root of 1 to the p-th power is the same as raising it to the k-th power,

Fr(t) = Fr (ζ)− Fr
(
ζ2
)

= ζk − ζ2k.

If k = 1 then Fr(t) = t, hence t is in Fp. If k = 2 then, using ζ4 = ζ, the
Frobenius switches the two summands of t

Fr(t) = ζ2 − ζ4 = ζ2 − ζ = −(ζ − ζ2) = −t.
Hence t is not in Fp.

A general proof of the quadratic reciprocity proceeds along similar lines.
We give a brief sketch. Let q be an odd prime, and let

q∗ =

{
q if q ≡ 1 (mod 4)

−q if q ≡ 3 (mod 4).
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Let ζ be a primitive root of 1 of order q. Gauss discovered that
√
q∗ can be

computed using ζ by the following formula (Gauss sum)√
q∗ =

∑
x∈S

ζx −
∑
x∈N

ζx

where S is the set of squares in (Z/qZ)× and N is the set of non-squares in
(Z/qZ)×. If p is a square modulo q the Frobenius fixes the Gauss sum. If p
is not a square modulo q the Frobenius switches the two summands in the
Gauss sum and, therefore, changes the sign of the Gauss sum. Hence q∗ is
a square modulo p if and only p is a square modulo q. This is the second
formulation of the quadratic reciprocity.

Exercises

1) Use 3 as a primitive root modulo 43 to write down a square root of −3
using cube roots modulo 43.

2) Use 5 as a primitive root modulo 73 to write down a square root of −3
using cube roots modulo 73.

3) Use quadratic reciprocity to determine odd primes p such that 5 a square.

4) Using the quadratic reciprocity determine whether 66 and 80 are squares
modulo 127.

5) Does the equation x2 − 6x + 28 = 0 have a solution modulo 131? Hint:
complete to a square, then use quadratic reciprocity.

6) Let ζ = e
2πi
5 be a complex primitive 5-th root of 1. Verify Gauss’s formula

√
5 = ζ + ζ4 − ζ2 − ζ3.

Let p be a prime such that p ≡ 1 (mod 5). Let g be a primitive root in

Z/pZ. Then ζ = g
p−1
5 is a primitive 5-th root of 1 in Z/pZ. A square root

of 5 is given by the Gauss sum

ζ + ζ4 − ζ2 − ζ3.

Use this formula to construct a square root of 5 in the following two exercises.

7) Use the primitive root g = 3 modulo 31 to find a square root of 5 modulo
31.

8) Use the primitive root g = 2 modulo 61 to find a square root of 5 modulo
61.

9) Let n be a positive integer. Let p be a prime divisor of n2 + 3. Prove
that p ≡ 1 (mod 3). Hint: Use(

n2

p

)
=

(
−3

p

)
.
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10) Use the previous exercise to prove that there are infinitely many primes
p ≡ 1 (mod 3).



CHAPTER 7

Applications of Quadratic Reciprocity

1. Fermat primes

In this section we shall use quadratic reciprocity to study Fermat num-
bers

Fn = 22
n

+ 1.

A Fermat number may or may not be prime. It is not known if there are
infinitely many Fermat primes. There are only 5 known Fermat primes.
They are:

n Fn

0 3
1 5
2 17
3 257
4 65537

It is interesting to note that the known Fermat primes are precisely the
first 5 Fermat numbers. In fact, Fermat claimed that

F5 = 22
5

+ 1 = 4294967297,

is also prime. However, about 100 years after Fermat, Euler found the
following factorization

4294967297 = 641 · 6700417.

By 2003 it was known that Fn is composite for 5 ≤ n ≤ 32. This is by no
means easy to verify since the numbers Fn quickly become huge. Indeed,

Fn+1 = (Fn − 1)2 + 1

so the number of digits of Fn+1 is roughly 2 times the number of digits of
Fn. For example, F5 has 10 digits, F6 has 20 digits and F7 has 39 digits:

F7 = 340282366920938463463374607431768211457.

A prime factorization of F7 was obtained in 1975 by Morrison and Brillhart:

F7 = 59649589127497217 · 5704689200685129054721.

95
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The presence of large primes in this factorization illustrates how difficult it
is to decide whether a Fermat number is composite. However, there is a
very efficient test (Pépin’s test) to decide whether a Fermat number Fn is
composite or not. We emphasize that the proof of the test exploits that, if
Fn is prime, the order of the group (Z/FnZ)× is a pure power of 2. Indeed,

|(Z/FnZ)×| = Fn − 1 = 22
n
.

Theorem 28. Let n ≥ 1. The Fermat number Fn is prime if and only
if

3
Fn−1

2 ≡ −1 (mod Fn).

Proof. Assume first that Fn is prime. We need to show that the con-
gruence holds. Recall that, by Euler’s criterion,

3
Fn−1

2 ≡
(

3

Fn

)
(mod Fn).

Thus, we need to show that 3 is not a square modulo Fn. Since Fn ≡ 1
(mod 4) the quadratic reciprocity implies that(

3

Fn

)
=

(
Fn
3

)
.

Furthermore, since 2 ≡ −1 (mod 3),

Fn = 22
n

+ 1 ≡ (−1)2
n

+ 1 = 2 (mod 3).

Thus, we have (
3

Fn

)
=

(
2

3

)
= −1

and the congruence holds. To prove the converse, we need the following
lemma.

Lemma 29. Let G be a group with identity e. Let g be an element in G

such that g2
k−1 6= e and g2

k
= e. Then the order of g is 2k.

Proof. The order of g divides 2k since g2
k

= e. Now note that all
divisors of 2k are

1, 2, 22, . . . , 2k−1 and 2k.

Thus, if the order of g is less then 2k, then it divides 2k−1. But then

g2
k−1

= e. This is a contradiction. The lemma is proved. �

Now we can finish the proof of the Theorem. Let p be a prime factor of
Fn. If

3
Fn−1

2 ≡ −1 (mod Fn)

then, since p divides Fn,

3
Fn−1

2 ≡ −1 (mod p).

By squaring both sides,

3Fn−1 ≡ 1 (mod p).
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Since Fn− 1 is a power of two, Lemma 29 implies that the order of 3 in the
group (Z/pZ)× is precisely Fn−1. Since the order of a group element is less
than or equal to the order of the group, it follows that

Fn − 1 ≤ p− 1

or Fn ≤ p. Hence p = Fn, that is, Fn is prime. �

Note, however, that the test does not give a factorization of Fn if Fn is
shown to be composite. Thus, by the end of 2005, factorizations of F14, F20,
F22 and F24 were not known.

Let us apply the Pepin test to F3 = 257. We need to calculate 3128

modulo 257. This can be done efficiently using successive squaring:

32 ≡ 9 (mod 257)
34 ≡ 81 (mod 257)
38 ≡ 136 (mod 257)
316 ≡ −8 (mod 257)
332 ≡ 64 (mod 257)
364 ≡ −16 (mod 257)
3128 ≡ −1 (mod 257)

which confirms that F3 = 257 is prime. Note that we needed 7 steps to run
the test. (7 comes from 128 = 27.) In general, the number of consecutive
squaring needed to run the test is equal to

log2((Fn − 1)/2) = 2n − 1.

For example, if n = 7, then the number of steps needed to determine that
F7 is composite is equal to 127. This number pales in comparison to the
actual prime factors of F7.

The idea behind the Pepin’s these can be described in terms of the
problem of determining the order of a group element g. If the order of g is
n, this can be verified by multiplying the group element n times. However,
if n = 2m, then the order of g can be determined by consecutive squaring

g2, g4 = (g2)2, . . . , g2
m

= (g2
m−1

)2,

a process consisting of m = log2(n) steps. In particular, if the order of
the ambient group is a power of 2, then the order of any element can be
determined by consecutive squaring.

Exercises

1) Use Pepin’s test to show that F4 is prime.

2) Let n ≥ 2. Show that Fn ≡ 2 (mod 5).

3) Let n ≥ 2. Assume that Fn is prime. Show that
(

5
Fn

)
= −1.
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4) Use the previous exercise to prove the following version of Pepin’s test for
Fermat’s numbers Fn if n ≥ 2: A Fermat number Fn is prime if and only if

5
Fn−1

2 ≡ −1 (mod Fn).

2. Quadratic Fields and the Circle Group

Pepin’s test is based on the fact that the order of the multiplicative
group (Z/FnZ)× is a pure power of 2, if the Fermat number Fn = 22

n
+ 1 is

prime. A purpose of this section is to introduce a subgroup T (p) of F×
p2

of

order p+ 1. If M` = 2` − 1 is a Mersenne prime then the order of T (M`) is
2`, a pure power of 2. Using this observation group the Lucas Lehmer test
can be formulated and proved in a way analogous to Pepin’s test.

The group T (p) is analogous to the multiplicative group of complex
numbers of norm 1. Recall that the norm of a complex number z = x + yi
is

N(z) = zz̄ = (x+ yi)(x− yi).

The complex number z can be written as z = r exp iϕ where r =
√
N(z)

and ϕ the argument of z. This is the angle that z forms with respect to the
x-axis.

-

6

x

y

�
�
�
�
��

ϕ

z = reiϕ

Multiplication of two complex numbers in this form is given by

(r1e
iϕ1)(r2e

iϕ2) = (r1r2)e
i(ϕ1+ϕ2).

In particular, if r1 = r2 = 1 then the group law amounts to adding the
arguments. This shows that the set of all complex numbers of norm 1 is a
group with respect to multiplication, denoted by T. Geometrically T is a
circle in the plane of complex numbers.

Pick an integer d which is not a square (i.e. not a quadratic residue)
modulo p. Recall that the finite field Fp2 can be realized as the set of
numbers

z = x+ y
√
d
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where x and y are elements of the finite field Fp, that is, integers considered
modulo p. Let z̄ = x− yi and define the norm N(z) of z by

N(z) = zz̄ = (x+ y
√
d)(x− y

√
d) = x2 − dy2.

By analogy with complex numbers, define

T (p) = {z = x+ y
√
d ∈ Fp2 | N(z) = 1}.

Since N(z1z2) = N(z1)N(z2), the product of two numbers with norm one
has norm one. Therefore the set T (p) is closed under multiplication. The
inverse of z in T (p) is simply z̄. It follows that T (p) is a subgroup of F×

p2
.

We shall now prove that T (p) is a cyclic group of order p + 1. The key is
that the Frobenius map Fr(z) = zp on Fp2 coincides with conjugation, as
proved in Proposition 25:

(x+ y
√
d)p ≡ x− y

√
d (mod p).

Proposition 30. The circle group T (p) is a cyclic group of order p+ 1.

Proof. Let γ be a primitive root in Fp2 . Then the order of γ is p2−1 =

(p− 1)(p+ 1). Any element α in F×
p2

can be written as α = γI for a unique

integer 1 ≤ I ≤ p2 − 1. If α is in T (p) then

1 = N(α) = α · ᾱ = α · αp = αp+1 = γI(p+1).

This shows that p2 − 1 = (p− 1)(p+ 1), the order of γ, divides I(p+ 1). It
follows that p− 1 divides I and the elements in T (p) are

γ(p−1), γ2(p−1), . . . , γ(p+1)(p−1),

p+ 1 of them in all. Moreover, the order of γp−1 is clearly p+ 1, completing
the proof. �

Example: Let p = 7, and write F72 as the set of elements x + iy where x
and y are integers modulo 7. Then there are 8 norm one elements. They
are

T (7) = {±1,±i,±(2 + 2i),±(2− 2i)}.
The order of 2 + 2i is 8. Indeed, squaring 2 + 2i gives

(2 + 2i)2 = 0 + 8i ≡ i (mod 7)

and, since the order of i is four, 2 + 2i has the order 8. In particular, the
group T (7) is cyclic.

In the proof of Lucas - Lehmer test it will be important to decide whether
an element α in T (p) is a square of another element in T (p). (We are not
discussing here whether α is a square in F×

p2
.) Since −1 is contained in T (p),

the squaring map α 7→ α2 is two to one. In particular, (p+ 1)/2 elements in
T (p) are squares and the other (p+ 1)/2 elements in T (p) are non-squares.
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Let β be an element of T (p) of order p+ 1. Then βI for I even is clearly a
square. Therefore βI for

I = 2, 4, . . . , p− 1, p+ 1

give (p + 1)/2 different squares in T (p). These are, therefore, all squares
in T (p). It follows that βI is a square or not depending whether I is even

or odd. Finally, notice that β
p+1
2 is an element of order 2 in T (p). There

is only one element of order 2 in the whole multiplicative group F×
p2

. That

element is −1. Hence

β
p+1
2 = −1.

We can now show the following analogue of Euler’s criterion for the
group T (p).

Proposition 31. Let p be an odd prime. For every α in the circle group
T (p)

α
p+1
2 =

{
1 if α is a square in T (p)

−1 if α is not a square .

Proof. If α is square, we can write α = β2I for some I. Then

α
p+1
2 = (β2I)

p+1
2 = (βp+1)I = 1.

If α is not a square, we can write α = β2I+1. Then

α
p+1
2 = (β(2I+1))

p+1
2 = (βp+1)I · β

p+1
2 = 1 · (−1) = −1.

�

Exercises

1) Let p be a prime congruent to 3 modulo 4. Then Fp2 can be realized as
the set of elements x + yi where x and y are integers considered modulo p
and i2 = −1. Show that i is a square in T (p) if and only if p ≡ 7 (mod 8).

2) The field F112 can be realized as the set of elements x + yi where x and
y are integers considered modulo p and i2 = −1. List all 12 elements in the
group T (11). Find a generator of this group.

3. Lucas Lehmer test revisited

We are now ready to give a proof of the Lucas Lehmer test for Mersenne
primes. The main tool is the group T (p) introduced in the previous section.

Proposition 32. Let ` be an odd prime. Then there exists a prime

divisor p of the Mersenne number M` = 2` − 1 such that
(
3
p

)
= −1. In

particular, if M` is a prime, then 3 is not a square modulo M`.
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Proof. We start by noting that M` satisfies a couple of simple congru-
ences. Since 2 ≡ −1 (mod 3) and ` is odd,

M` ≡ (−1)` − 1 = −2 ≡ 1 (mod 3).

This implies M` is a square modulo 3. Next, since 4 divides 2`, we have M` ≡
−1 (mod 4). Let M` = p1 · · · pn be a factorization of M` into primes. Since
M` ≡ −1 (mod 4), an odd number of prime factors pi in the factorization
of M` satisfy pi ≡ −1 (mod 4). Using the mulitiplicativity property of the
Legendre’s symbol,

1 =

(
M`

3

)
=
(p1

3

)
· . . . ·

(p1
3

)
.

Next, using the quadratic reciprocity, the right hand side can be rewritten
as

1 = (−1)s
(

3

p1

)
· . . . ·

(
3

p1

)
where s is the number of prime factors pi such that pi ≡ −1 (mod 4). We
know that s is odd. Hence (−1)s = −1 and(

3

p1

)
· . . . ·

(
3

p1

)
= −1.

This implies that one of the Legendre’s symbols is −1. The proposition is
proved. �

Let p be an odd prime such that 3 is not a quadratic residue modulo p.
Then the field Fp2 can be realized as

Fp2 = {x+ y
√

3 | x, y ∈ Fp2}.

Let α = 2 +
√

3, and let ᾱ = 2−
√

3. Then, as real numbers,

α · ᾱ = (2 +
√

3)(2−
√

3) = 1.

In particular, α can be viewed as an element in T (p) for all p such that 3 is
not a square modulo p.

Lemma 33. Assume that M` = 2` − 1 is a Mersenne prime. Then
α = 2 +

√
3 is not a square of an element in T (M`).

Proof. Assume that 2+
√

3 is a square of an element x+y
√

3 in T (M`),
that is,

(x+ y
√

3)2 = x2 + 3y2 + 2xy
√

3 = 2 +
√

3.

This implies that x2 + 3y2 = 2. Since x + y
√

3 is in T (M`) we also have
x2 − 3y2 = 1. Adding this two equations gives

2x2 = 3.

Since M` ≡ 1 (mod 8), 2 is a square mod M`. It follows that 3 is a square.
A contradiction, since 3 is not a square modulo a Mersenne prime. The
lemma is proved. �



102 7. APPLICATIONS OF QUADRATIC RECIPROCITY

Now we are ready to prove a version (the first version) of the Lucas -
Lehmer test for Mersenne primes. Note a similarity between this test and
Pepin’s test for Fermat’s primes.

Theorem 34. Let ` be an odd prime. Let α = 2+
√

3. Then M` = 2`−1
is a prime if and only if

α2`−1 ≡ −1 (mod M`)

Proof. Assume that the congruence is satisfied. We want to show that
M` is a prime number. By Proposition 32 there exists a prime divisor p of
M` such that 3 is not a square modulo p. We can view α as an element in
T (p). The congruence

α2`−1 ≡ −1 (mod p)

implies that the order of α in T (p) is 2` = M` + 1. On the other hand, α,
as an element of T (p), has the order less than or equal to the order of T (p).
Therefore

M` + 1 ≤ p+ 1

and, after subtracting 1 from both sides, M` ≤ p. Hence M` = p, that is,
M` is a prime number.

Conversely, assume that M` is a prime. By Lemma 33, α is not a square
in T (M`). By Proposition 31 (the analogue of Euler’s criterion for the circle
group)

α2`−1 ≡ −1 (mod M`).

The theorem is proved. �

Example: Consider ` = 5, so the Mersenne number is 31. We need to
compute (2 +

√
3)16 modulo 31. This is done by consecutive squaring, four

times:
(2 +

√
3)2 ≡ 7 + 4

√
3 (mod 31)

(7 + 4
√

3)2 ≡ 2− 3
√

3 (mod 31)

(2− 3
√

3)2 ≡ 0− 12
√

3 (mod 31)

(0− 12
√

3)2 ≡ −1 + 0
√

3 (mod 31)

This shows that (2 +
√

3)16 is congruent to −1 modulo 31. Thus 31 is prime
by the test.

On the surface the test given by Theorem 34 appears unrelated to the
Lucas - Lehmer test introduced in Section ???:

Theorem 35. (Lucas-Lehmer) Define recursively a sequence sn of inte-
gers by s1 = 4 and sn+1 = s2n− 2. Let ` be an odd prime. Then M` = 2`− 1
is prime if and only if s`−1 ≡ 0 (mod M`).

How do we relate the two tests? It turns out that the sequence sn is
defined using α = 2 +

√
3. Let β = 2 −

√
3 and define a sequence tn for
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n = 1, 2, . . . by

tn = α2n−1
+ β2

n−1
.

We claim that sn = tn for all integers n. Since

t1 = α+ β = 4

we have that t1 = s1. In order to show that tn = sn for all n, it suffices to
show that tn satisfy the same recursive relation as sn. This is not difficult
at all. Since αβ = 1,

t2n − 2 = (α2n−1
+ β2

n−1
)2 − 2 = α2n + β2

n
= tn+1,

and the two sequences are the same.

We can now derive the classical Lucas - Lehmer test from Theorem 34.
Assume that M` divides s`−1. We want to show that M` is prime. The
congruence

s`−1 = α2`−2
+ β2

`−2 ≡ 0 (mod M`)

implies that

α2`−2 ≡ −β2`−2
(mod M`).

Multiply both sides of this congruence by α2`−2
. Since α2`−2 · α2`−2

= α2`−1

and α2`−2 · β2`−2
= 1, we obtain that

α2`−1 ≡ −1 (mod M`).

It follows that M` is prime by Theorem 34.
The converse is just as easy. Assume that M` is a prime. We want to

show that M` divides s`−1. By Theorem 34,

α2`−1 ≡ −1 (mod M`).

By changing the sign of both sides and factoring α2`−1
= α2`−2 · α2`−2

the
congruence can be rewritten as

−α2`−2 · α2` ≡ 1 (mod M`).

This implies that −α2`−2
is a multiplicative inverse of α2`−2

. But β2
`−2

is

also an inverse of α2`−2
. By uniqueness of the multiplicative inverse in a

field,

β2
`−2

= −α2`−2

and

α2`−2
+ β2

`−2 ≡ 0 (mod M`).

This shows that s`−1 = α2`−2
+ β2

`−2
is divisible by M`, as desired.

Of course, there is noting terribly special about the number 2+
√

3. It is
possible to develop many different yet similar versions of the Lucas-Lehmer
test by replacing 2 +

√
3. For example, we can take

α =
3

2
+

1

2

√
5.
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Let p be an odd prime such that 5 is not a quadratic residue modulo p.
Then the field Fp2 can be realized as

Fp2 = {x+ y
√

5 | x, y ∈ Fp2}.

Since 2 is invertible modulo p, the number α = 3
2 + 1

2

√
5 can be viewed as

an element of Fp2 . Moreover, since

αᾱ =

(
3

2
+

1

2

√
5

)(
3

2
− 1

2

√
5

)
= 1,

α is an element of T (p).
Now assume that ` is an odd prime such that M` is a Mersenne prime.

If we can show that

• 5 is not a square modulo M`,
• α is not a square in T (M`),

then we can develop a version of the Lucas - Lehmer test using 3
2 + 1

2

√
5

instead of 2 +
√

3. It turns out that the two bullets hold if ` ≡ 3 (mod 4).
In particular, we get a primality test for the Mersenne numbers M` such
that ` ≡ 3 (mod 4):

Theorem 36. Define a recursive sequence un of integers by u1 = 3 and
un+1 = u2n − 2. If ` is a prime congruent to 3 modulo 4, then the Mersenne
number M` is prime if and only if

u`−1 ≡ 0 (mod M`).

A proof of this test is given as a sequence of exercises below. As an
example, take ` = 7. Then M7 = 27 − 1 = 127. The first six values of un,
modulo 127, are

u1 ≡ 3 (mod 127)
u2 ≡ 7 (mod 127)
u3 ≡ 47 (mod 127)
u4 ≡ 48 (mod 127)
u5 ≡ 16 (mod 127)
u6 ≡ 0 (mod 127)

confirming that 127 is a Mersenne prime.

Exercises

1) Let ` be an odd prime such that M` = 2` − 1 is a Mersenne prime. Use
the quadratic reciprocity to show that 5 is a square modulo M` if and only
if ` ≡ 1 (mod 4).

2) Let ` ≡ 3 (mod 4) be an odd prime. Show that there exists a prime

divisor p of M` such that
(
5
p

)
= −1.

3) Let ` ≡ 3 (mod 4) be an odd prime. Assume that M` = 2` − 1 is a
Mersenne prime. Then α = 3

2 + 1
2

√
5 is not a square in T (M`).
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4) Let ` ≡ 3 (mod 4) be an odd prime. Let α = 3
2 + 1

2

√
5. Show that

M` = 2` − 1 is a Mersenne prime if and only if

α2`−1 ≡ −1 (mod M`).

5) Let ` ≡ 3 (mod 4) be an odd prime. Define a recursive sequence un by
u1 = 3 and un+1 = u2n − 2. Show that M` = 2` − 1 is a Mersenne prime if
and only if

u`−1 ≡ 0 (mod M`).

6) Calculate u18 modulo M19 = 524287 to show that M19 is a Mersenne
prime.

7) Let M` = 2` − 1 be a Mersenne number. Show that M` ≡ 1 (mod 7) if
` ≡ 1 (mod 3) and M` ≡ 3 (mod 7) if ` ≡ 2 (mod 3).

8) Let M` = 2`− 1 be a Mersenne number where ` ≡ 1 (mod 3). Show that

there exists a prime divisor p of M` such that
(
7
p

)
= −1.





CHAPTER 8

Sums of two squares

1. Sums of two squares

In the next several section we shall describe all positive integers that
can be written as a sum of two squares. As the first step, we shall solve this
problem for prime numbers. Below we see a list of the first six odd primes
indicating for each prime whether or not (Y or N) it can be written as a
sum of two squares.

Prime Y/N Sum
3 N -
5 Y 22 + 12

7 N -
11 N -
13 Y 32 + 22

17 Y 42 + 12

By this table we see that 3, 7, 11 cannot be written as a sum of two
squares, while 5, 14, 17 can be written as a sum of two squares. In fact,
the following is true.

p ≡ 1 (mod 4)⇔ p is a sum of two squares.

The proof of this statement is based on the fact that −1 is a square
modulo p if and only p ≡ 1 (mod 4). Indeed, if a2 + b2 = p then

a2 + b2 ≡ 0 (mod p).

Now note that a and b are less than p. It follows that b is relatively prime
to p. In particular, there exists an inverse b−1 of b modulo p. Multiplying
the congruence by b−2 gives(a

b

)2
+ 1 ≡ 0 (mod p)

or (a/b)2 ≡ −1 (mod p), which means that -1 is a square modulo p. Thus
we have shown that, if p can can be written as a sum of two squares, then

p ≡ 1 (mod 4).

107
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But how do we prove that every prime p ≡ 1 (mod 4) can be written as
a sum of two squares? To begin, we know that the equation

x2 ≡ −1 (mod p)

has a solution. This, in turn, gives a solution to

x2 + y2 ≡ 0 (mod p).

(Just pick y = 1 and x such that x2 ≡ −1 (mod p).) For example, if p = 13
then

52 = 25 ≡ −1 (mod 13)

hence
52 + 12 ≡ 0 (mod 13).

Without congruences, we have

52 + 11 = 2 · 13.

In order to represent 13 as a sum of two squares we need to remove the
factor 2 from 2 · 13. This will be accomplished by Fermat’s Method of
Infinite Descent. The aim here is to replace the equation

x2 + y2 = mp

by
x21 + y21 = rp

such that the integer r is smaller than the integer m. In fact, we will see
that the method gives r ≤ m/2 so, starting with x2+y2 = mp, we can find a
solution to x2 +y2 = p in less than log2m steps. To explain how the Method
of Descent works, we need first the following formula:

(x2 + y2)(u2 + v2) = (xu+ yv)2 + (xv − yu)2.

This formula says that a product of two sums of two squares is again a sum
of two squares. The best way to explain this formula is to use complex
numbers. Recall, if z = x+ yi is a complex number (here i2 = −1) then its
conjugate is z̄ = x− yi. Then

z · z̄ = (x+ yi) · (x− yi) = x2 + y2.

Thus, if we write z = x+ iy and w = u− iv, then

(x2 + y2)(u2 + v2) = (z · z̄)(w · w̄) = (zw) · (z̄w̄).

Since zw = (xu + yv) + i(yu − xv) and z̄ · w̄ = zw (the conjugate of the
product is equal to the product of conjugates) we have

(x2 + y2)(u2 + v2) = (zw) · (zw) = (xu+ yv)2 + (xv − yu)2

as claimed. Consider, for example, 22 + 12 and 32 + 22. Since

(2 + i)(3 + 2i) = 4 + 7i

then
(22 + 12)(32 + 22) = 42 + 72.
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METHOD OF DESCENT

We start with an equation x2 + y2 = mp. Pick u ≡ x (mod m) and
v ≡ y (mod m) such that

−m
2
< u, v ≤ m

2
.

The choice of u and v implies that u2 + v2 is congruent to x2 + y2 modulo
m, so we definitely can write

u2 + v2 = mr.

Using the formula for the product of two sums of two squares, we have

(xu+ yv)2 + (xv − yu)2 = m2rp.

Since v ≡ y (mod m) and u ≡ x (mod m), it follows that

xv − yu ≡ xy − yx ≡ 0 (mod m)

and

xu+ yv ≡ x2 + y2 ≡ 0 (mod m).

Thus we can write (
xu+ yv

m

)2

+

(
xv − yu
m

)2

= rp

where the two expressions in brackets are integers. Thus, our task is ac-
complished provided we can prove that r is smaller than m. But that is not
difficult. Indeed,

mr = u2 + v2 ≤
(m

2

)2
+
(m

2

)2
=
m2

2

hence

r ≤ m

2
.

Summarizing, the whole algorithm can be simply written as follows:

(1) Pick u ≡ x (mod m) and v ≡ y (mod m) such that

−m
2
< u, v ≤ m

2
.

(2) Put

x1 =
xu+ yv

m
and y1 =

xv − yu
m

(3) Write

x21 + y21 = m1p.

If m1 = 1 stop. Else go to (1).
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Let us see how this algorithm gives a representation of 13 as a sum of
two squares, starting with 52 + 12 = 2 · 13.

52 + 12 = 2 · 13 x2 + y2 = mp
1 ≡ 5 (mod 2) u ≡ x (mod m)
1 ≡ 1 (mod 2) v ≡ y (mod m)
12 + 12 = 2 · 1 u2 + v2 = mr
32 + 22 = 1 · 13 x21 + y21 = rp

If we know a primitive root modulo p, the whole algorithm can be easily
implemented on a computer. For example, 2 is a primitive root modulo 13.
Thus

2
13−1

4 ≡ 8 (mod 13)

is a root of −1 modulo 13 and

82 + 12 = 65 = 5 · 13

gives a starting input for the descent algorithm which will terminate - in
this example - in at most two steps.

Exercises

1) Use 13 = 32 + 22 and 17 = 42 + 12 to write 221 as a sum of two squares.

2) Starting with the equation

82 + 12 = 5 · 13

use the method of descent to represent 13 as a sum of two squares.

3) Represent 73 as a sum of two squares using the following two steps.
a) First, use the primitive root 5 to find x such that

x2 + 12 = m · 73.

b) Then use the method of descent to find a solution.

In the following three exercises we shall adopt the method of descent to
find out which primes p can be written as a sum x2 + 2y2 = p.

4) Use the quadratic reciprocity to find a necessary condition such that a
prime p can be written as x2 + 2y2 = p.

5) Prove the formula

(x2 + 2y2)(u2 + 2v2) = (xu+ 2yv)2 + 2(yu− xv)2.

6) Note that −2 is a square modulo 11. Indeed, 82 + 2 = 6 · 11. Use this
information, and the method of descent to construct a solution of x2+2y2 =
11.
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2. Gaussian integers

Complex numbers a+bi such that a and b are integers are called Gaussian
integers. The ring Z[i] of Gaussian integers is in many ways similar to the
ring of integers Z. For example, there is an Euclidean-type algorithm for
Z[i] which can be used to prove a uniqueness of factorization into primes.
The key tool here is the norm N(α)

N(α) = α · ᾱ = a2 + b2.

Notice that N(α) is always a positive integer. It is 0 if and only if α is 0.
The most important property of the norm is that it is multiplicative:

N(αβ) = (αβ) · (αβ) = (αᾱ) · (ββ̄) = N(α)N(β).

We start with the following simple proposition which describes the group
Z[i]× of invertible Gaussian integers.

Proposition 37. Let α be a Gaussian integer. The following three
statements are equivalent:

(1) α is invertible, that is, there exists a Gaussian integer β such that
α · β = 1.

(2) N(α) = 1.
(3) α is 1, -1, i or −i.

Proof. If (1) holds then, after taking norms,

N(α)N(β) = N(α · β) = N(1) = 1.

Since N(α) and N(β) are positive integers, they have to be 1. Thus, we
have shown that (1) implies (2). If N(α) = a2 + b2 = 1 then α must be one
of the given four Gaussian integers. In particular (2) implies (3). Finally,
each of the four: 1, -1 , i and −i is invertible, so (3) implies (1). �

We say that a Gaussian integer β divides α is there exists a Gaussian
integer γ such that

α = γ · β.
For example, 2 + i divides 5 since 5 = (2− i)(2 + i). Notice that, if β divides
α, then the norm N(β) divides N(α). For example, the norm of 2 + i is 5
while the norm of 3 + 2i is 13. Thus 2 + i cannot possibly divide 3 + 2i.

The Euclidean algorithm works as follows. If α and β are two integers
(we shall omit “Gaussian” from now on) then there are two integers γ and
ρ (that will be precisely defined in a moment) such that

α = γ · β + ρ and N(ρ) < N(β).

The integer γ is defined to be an approximation of the complex fraction

α

β
≈ γ
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obtained by rounding each coordinate to the nearest integer, in the usual
sense. In particular, we shall round

0.5 ≈ 1 and − 0.5 ≈ 0.

Once we have γ then we put ρ = α− γ · β. As an example, let us calculate
with α = 3 + 2i and β = 3− 2i. Then

α

β
=

3 + 2i

3− 2i
=

5

13
+

12

13
i ≈ i = γ.

which implies that ρ = (3 + 2i) − (3 − 2i)i = 1 − i. Note that N(1 − i) =
2 < N(3 + 2i) = 13.

It remains to check that N(ρ) < N(β) holds in general. From the
definition of γ, notice that

α

β
− γ = x+ yi

with |x|, |y| ≤ 1/2. Thus, it follows that

N(ρ)

N(β)
= N

(
α

β
− γ
)
≤
(

1

2

)2

+

(
1

2

)2

=
1

2
.

We have shown even more than it was needed: N(ρ) ≤ N(β)/2. This
property is important because it guarantees that the repeated application
of the algorithm

α = γ1 · β + ρ1
β = γ2 · ρ1 + ρ2

...

stops in a finite number of steps. In fact, since the reminder in each consec-
utive division is less than the half of the reminder in the previous step, it
will not take more than log2N(β) steps in all.

If the last non-zero reminder is ρn then, arguing as in the case of usual
integers, any common divisor δ of α and β divides ρn. Indeed, the first
equation

α = γ1 · β + ρ1

shows that δ divides ρ1, the second equation

β = γ2 · ρ1 + ρ2

shows that δ divides ρ2 (since it divides β and ρ1). Working in this manner
from the top to the bottom, we see that δ divides ρn, the last non-zero
reminder. (In particular, N(δ) ≤ N(ρn).) In the other direction, the last
equation

ρn−1 = γn+1ρn + 0

implies that ρn divides ρn−1. Then the equation

ρn−2 = γnρn−1 + ρn

implies that ρn divides ρn−2. Continuing in this fashion, we see that ρn
is a common divisor of α and β. This shows that the reminder ρn can be
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considered the greatest common divisor of α and β. (Its norm is the greatest
amongst all common divisors of α and β.)

Consider, for example, α = 3 + 2i and β = 3 − 2i. Then, as we have
already computed, ρ1 = 1− i. The next step gives

β

ρ1
=

3− 2i

1− i
=

5

2
+

1

2
i ≈ 3 + i = γ2,

which implies that ρ2 = (3 − 2i) − (1 − i)(3 + i) = −1, and then, finally,
ρ3 = 0. Thus −1 is the greatest common divisor of 3 + 2i and 3 − 2i.
Equipped with these tools, one can now show that Gaussian integers admit
unique factorization into prime numbers. The proof is very similar as the
one for usual integers. Instead of repeating similar arguments, we shall focus
here on some differences.

First of all, instead of talking about prime numbers, it is more correct
to talk about indecomposable numbers. A number α is indecomposable if

α = βγ

then either β or γ is invertible. This concept works well in the case of usual
integers. For example, the only way to factor 3 in Z is

3 = (−1) · (−3).

Since −1 is invertible, 3 is indecomposable. Moreover, the factorization of
(usual) integers is not quite unique, if we allow fudging with signs, since 6
can be factored in two ways:

6 = 2 · 3 = (−2) · (−3).

Of course, the two factorizations are not that much different, since 2 and
−2 could be considered the same “prime number”. This example should
explain why, technically, a prime is not a number. Rather, a prime is a class
of all indecomposable integers, such as

{−2, 2}

where the quotient of any two integers in the class is an invertible integer.
(Note that the quotient of −2 and 2 is −1.) In the case of integers Z we
have avoided this sort of intricacies by simply restricting the discussion to
positive integers!

With this distinctions in mind, we are now ready to figure out primes in
the ring of Gaussian integers.

Proposition 38. Let p be a prime such that p ≡ 1 (mod 4). Write p
as a sum of two squares, p = a2 + b2. Then α = a+ bi is an indecomposable
Gaussian integer.

Proof. Note that the norm of α is p. Now, if α = βγ then, after taking
norms,

N(α) = p = N(β)N(γ).



114 8. SUMS OF TWO SQUARES

Since p is prime, it follows that N(β) = 1 or N(γ) = 1. In any case, one
of the two, β or γ must be invertible Gaussian integer. The proposition
follows. �

Consider, for example, p = 5. Then 5 = (2 + i)(2 − i) and both 2 + i
and 2− i are indecomposable. Furthermore, they represent different primes,
since their respective classes include

2 + i, −2− i, i · (2 + i) = −1 + 2i, and − i · (2 + i) = 1− 2i

and

2− i, −2 + i, i · (2− i) = 1 + 2i, and − i · (2− i) = −1− 2i.

In words, 2+i and 2−i are two indecomposable Gaussian integers represent-
ing different primes, since one is not obtained from the other by multiplying
by 1, -1, i or −i. This happens for all p ≡ 1 (mod 4). We can always fix a
unique representative in the class of the form a + bi or a − bi with a and b
positive and a > b.

The situation is somewhat different for p = 2. Since 2 is also a sum of
two squares, we have

2 = 12 + 12 = (1 + i)(1− i).
Here however, 1 + i = i(1− i), so 1 + i and 1− i represent the same prime.

Finally, it remains to discuss primes p ≡ 3 (mod 4). These turn out to
be indecomposable. Indeed, assume that we have a factorization

p = α · β
where α and β are two Gaussian integers. After taking norms,

N(p) = p2 = N(α)N(β).

If N(α) = p, then p = a2 + b2 where α = a + bi. This implies that p can
be represented as a sum of two squares, a contradiction. Thus the only
possibilities are that N(α) = 1 and N(β) = p2 or N(α) = 1 and N(β) = p2,
i.e. either α or β is a unit. Hence p is indecomposable.

We are now ready to prove the following:

Theorem 39. Every class of indecomposable Gaussian integers contains
precisely one of the following:

(1) 1 + i.
(2) A usual prime p congruent to 3 modulo 4.
(3) a + bi or a − bi where a > b are two positive integers such that

a2 + b2 is a prime congruent to 1 modulo 4.

In particular, every Gaussian integer α can be written as a product

α = imπ1 · . . . · πn
where m is an integer modulo 4, and πk are indecomposable integers from
(1) - (3) above. This factorization is unique up to permutation of factors.
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Proof. Let π be an indecomposable gaussian integer. Consider the
positive integer N(π) = ππ̄. If N(π) is divisible by 2 then we have

ππ̄ = N(π) = . . . (1 + i)(1− i)

from which we can conclude that 1 + i or 1− i divides π. Thus π is in the
class of 1 + i. Similarly, if N(π) is divisible by a prime p congruent to 1
modulo 4 then

ππ̄ = N(π) = . . . (a+ bi)(a− bi)

where a2+b2 = p. Thus a+bi or a−bi divides π and π is in the class of a+bi
or a− bi. Finally, if N(π) is divisible by a prime p congruent to 3 modulo 4
then π is the class of p. This proves the theorem, as the uniqueness of the
representatives was already discussed. �

We can now give a complete characterization of numbers that can be
written as a sum of two squares.

Corollary 40. Let n be a positive integer. Factor n into primes: n =
pn1
1 · · · pnrr . Then n can be written as a sum of two squares if an only if ni

is even for every pi ≡ 3 (mod 4).

Proof. If n satisfies the assumptions, then we can write n = m2p1 · · · ps
where every pi is either equal to 2 or congruent to 1 modulo 4. In particular,
each can be written as a sum of two squares, pi = N(πi). It follows that n
is a sum of two squares

n = N(mπ1 · · ·πs).

Conversely, assume that n = a2+b2. Factor a+bi into a product of Gaussian
primes:

a+ bi = π1 · · ·πt.

Then a − ib = π̄i · · · π̄t and n = (a + ib)(a − ib) is a product of πiπ̄i. Since
πiπ̄i = p for some p ≡ 1 (mod 4) or 2, or πiπ̄i = p2 for some p ≡ 3 (mod 4),
the exponents of prime factors of n are even for all p ≡ 3 (mod 4), as
desired. �

Exercises

1) Find the greatest common divisor of 11 + 7i and 5 + 3i.

2) Factor

11 + 3i

into indecomposable gaussian integers. Hint: pretty much the only way to
factor is to guess divisors. How do we guess here? Compute the norm!
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3. Method of descent revisited

In the last section we have shown that a uniqueness of factorization holds
for Gaussian integers and we have described all gaussian primes. Armed
with this information, we can now gain a more conceptual understanding of
Fermat’s method of descent.

Let p be a prime congruent to 1 modulo 4. If we have a sum of two
squares that is equal to a multiple of of p then the method of descent
produces a sum of two squares equal to p. For example, if p = 13, then
52 + 12 = 2 · 13 and the method of descent produces 32 + 22 = 13. The
reader might have noticed that the method of descent is similar to the Eu-
clidean algorithm for Gaussian integers. This is not a coincidence. Indeed,
using Gaussian integers we can write

(5 + i)(5− i) = 2 · 13.

Writing 13 as a sum of two squares is equivalent to factoring 13 = (3 +
2i)(3− 2i). Substituting this in the identity above,

(5 + i)(5− i) = 2 · (3 + 2i)(3− 2i).

Since 3 + 2i is prime, uniqueness of factorization implies that 3 + 2i divides
5 + i or 5 − i. Note that if 3 + 2i divides 5 + i then, by taking complex
conjugates, 3 − 2i divides 5 − i. In any case, 13 and 5 − i have a common
divisor, either 3+2i or 3−2i. Now note that 3−2i and 3+2i cannot, both,
be divisors of 5−i. Otherwise, since 3−2i and 3+2i are two different primes,
their product (3− 2i)(3 + 2i) = 13 would also divide 5− i, a contradiction.
This shows that either 3 + 2i or 3 − 2i is a greatest common divisor of 13
and 5 − i. The greatest common divisor of two Gaussian integers is, of
course, the product of all common primes, with highest possible exponents.
As for the ordinary integers, the greatest common divisor is computed by
the Euclidean algorithm. Dividing 13 by 5− i gives

13

5− i
=

5

2
+

1

2
i = 2 + (

1

2
+

1

2
i)

and, after multiplying both sides by 5− i,

13 = (5− i) · 2 + (3 + 2i).

This shows that diving 13 with 5− i gives 3+2i as a reminder. As one easily
checks that 5− i is divisible by 3 + 2i, it follows that 3 + 2i is the greatest
common divisor of 13 and 5− i. More importantly, we have found a way to
represent 13 as a sum of two squares:

32 + 22 = 13.

This method works in general. Indeed, assume that a multiple of p can
be written as a sum of two squares

x2 + y2 = mp
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such that x and y are not divisible by p. Recall that this can be always
arranged, for example, with y = 1 since −1 is a square modulo p for p
congruent to 1 modulo 4. Writing p as a sum of two squares is equivalent
to factoring

p = ππ̄

as a product of two Gaussian primes. Then, by uniqueness of factorization,
π divides x + yi or x − yi. Assume, without any loss of generality, that π
divides x+yi. Then π̄ cannot divide x+yi. Otherwise p = ππ̄ would divide
x+ yi, a contradiction since p does not divide x and y. This shows that

π = gcd(p, x+ yi).

In particular, π can be obtained from p and x + yi using the Euclidean
algorithm. Dividing x− yi by p gives

p

x− yi
=
p(x+ yi)

x2 + y2
=

x

m
+
y

m
i.

Pick integers u ≡ x (mod m) and v ≡ y (mod m) such that

−m
2
< u, v ≤ m

2
.

Then
p

x− yi
= (

x− u
m

+
y − v
m

i) + (
u

m
+
v

m
i)

and, after multiplying both sides by (x− yi),

p = (
x− u
m

+
y − v
m

i)(x− yi) + (
xu+ yv

m
+
xv − yu
m

i).

It follows that dividing p by x− yi gives a reminder

x1 + y1i =
xu+ yv

m
+
xv − yu
m

i.

Not that x1 and y1 are exactly the same as those produced by Fermat’s
descent. This shows that Fermat’s method of descent can be recovered from
the Euclidean algorithm for Gaussian integers.

Exercises

1) Compute the greatest common divisor of 9+7i and 13 to find x+yi such
that x2 + y2 = 13.

2) Compute the greatest common divisor of 9+2i and 17 to find x+yi such
that x2 + y2 = 17.

3) Compute the greatest common divisor of 7+3i and 29 to find x+yi such
that x2 + y2 = 29.

4) Compute the greatest common divisor of 9+8i and 29 to find x+yi such
that x2 + y2 = 29.





CHAPTER 9

Pell’s Equations

1. Shape numbers and Induction

Shape numbers count objects arranged in a special shape, such as a
triangle or a square. The problem of finding and proving a formula for
shape numbers will introduce us to one of the main topics of this section:
mathematical induction. In the next section we shall compare certain shape
numbers. This will lead us to the Pell equation, the main subject of this
chapter.

The simplest example of shape numbers are triangular numbers Tn. The
number Tn is a sum of the first n integers:

Tn = 1 + 2 + . . .+ n.

The number Tn is called a triangular number because it counts objects
arranged in a triangular shape. For example T3 = 1 + 2 + 3 counts the
number of circles arranged in the following triangle:

kk kk k k
T3

In order to develop a closed formula for Tn (a formula that involves a
definite number of operations) we apply the following trick. Combine two
triangles with Tn circles to create an (n+ 1)× n-rectangle. For example, if
n = 3 then the picture is:

119
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kk kk k k
{ { {{ {{

This shows that 2Tn = (n+ 1)n

Tn =
(n+ 1)n

2
.

Obviously, the trick we used here is very particular to this example. On the
other hand, mathematical induction is a very general method that can be
used to verify a statement which depends on a positive integer. The basic
principle of induction is:

Every nonempty set of positive integers has a smallest element.

Suppose we have a statement that involves a positive integer n. We will
denote it S(n). To prove S(n) for every n = 1, 2, 3, · · · it suffices to prove
the following:

(1) S(1) is true (this is called the basis of induction), and
(2) the truth of S(n − 1) (induction assumption) implies the truth of

S(n) (this is called the inductive step).

A way to think about this is the following. Consider the set of all n such
that S(n) fails. We want to show that this set is empty. Well, if not, then
there is a minimal element of this set, say m. Now m > 1 by (1). But then
the fact that S(m− 1) is true while S(m) is false contradicts (2).

For example, let S(n) be the statement that a closed formula for the
n-th triangular number (or the sum of the first n integers) is given by

1 + 2 + . . .+ n =
(n+ 1)n

2
.

In order to verify this statement using the induction we need first to check
it for n = 1 (basis of induction). Since (we substitute n = 1 in both sides of
the above identity)

1 =
(1 + 1)1

2
,

it follows that S(1) is true.
The step of induction: We need to verify the statement S(n) assuming

that S(n − 1) is true. The statement S(n − 1) says that the sum of first
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n− 1 integers is equal to

1 + 2 + . . .+ (n− 1) =
(n− 1)n

2
.

Add n to both sides, to get

1 + 2 + . . .+ (n− 1) + n =
(n− 1)n

2
+ n.

Since
(n− 1)n

2
+ n =

n

2
[(n− 1) + 2] =

n(n+ 1)

2
we see that S(n) is true. This completes the induction in this example.

One can argue that we really did not need the induction to figure out
the formula for Tn. However, the trick used to figure out Tn might not be
available in some other situations. So here is an approach to a problem
that makes induction indispensable. For example, assume we want to find
a formula for the sum of the first n odd numbers. We can easily work out
the sum of the first n odd integers for n = 1, 2, 3, 4 and 5. We see that the
sums are

1, 4, 9, 16, and 25,

respectively. This leads us to conjecture that the sum of the first n odd
integers is equal to n2. This statement can be proved by mathematical
induction. (See an exercise bellow.)

There are other versions of mathematical induction. For example, (2)
can be replaced by:

(2’) the truth of S(1), S(2), · · · , S(n− 1) implies the truth of S(n).

This sort of induction was used when we proved that cyclotomic polyno-
mials Φn(x) have integral coefficients. Indeed, the base of induction is true
since Φ1(x) = x− 1. The step of induction is based on the factorization

xn − 1 =
∏
d|n

Φd(x).

By induction assumption, Φd(x) for d < n have integral coefficients. It
follows that Φn(x) has integral coefficients. This conclusion is based on the
fact that a quotient of two monic polynomials with integral coefficients is
again a monic polynomial with integral coefficients.

Exercises

1) Use mathematical induction to prove that for every positive integer n

1 · 2 + 2 · 3 + · · ·+ n(n+ 1) =
n(n+ 1)(n+ 2)

3
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2) Use mathematical induction to prove that the sum of the first n odd
integers is equal to n2.

3) For every positive integer n, show that

(1 +
√

5)n − (1−
√

5)n

2n
√

5

is a positive integer. In fact, un is the n-th Fibonacci number.

2. Square-Triangular Numbers and Pell Equation

In the previous section we introduced so-called triangular numbers. The
name comes from the fact that these numbers count objects arranged in
a certain shape - a triangle in this case. Recall that the m-the triangular
number is

Tm = 1 + 3 + ...+m =
m(m+ 1)

2
.

Similarly, we have square numbers Sn = n2. In the following table we list
first 8 triangular and square numbers

k 1 2 3 4 5 6 7 8
Tk 1 3 6 10 15 21 28 36
Sk 1 4 9 16 25 36 49 64

Notice that the numbers 1 and 36 appear on both lists. In other words,
these two numbers are both, square and triangular numbers. Therefore,
1 and 36 are called square-triangular numbers. In the next couple of sec-
tions we shall completely solve the problem of finding all square - triangular
numbers. Of course, the issue here is to solve the equation

Tm = Sn.

The smallest solution, as seen from the list, is m = 1, n = 1. An amazing
fact is that all other solutions can be generated from this one. In order to
explain, we need to rewrite the equation. First, we multiply each side of
Tm = Sn by 8 to get

4m(m+ 1) = 8n2.

The left hand side can be manipulated by completing a square,

4m2 + 4m = 4m2 + 4m+ 1− 1 = (2m+ 1)2 − 1.

The right hand side is equal to 2(2n)2. Thus, if we substitute

x = 2m+ 1 and y = 2n,

then the equation Tm = Sn becomes

x2 − 2y2 = 1
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and the first solution (m,n) = (1, 1) of Tm = Sn translates into a solution
(x, y) = (3, 2) of x2 − 2y2 = 1. The equation x2 − 2y2 = 1 is a special case
of the general Pell equation

x2 −Dy2 = 1.

We have translated the problem of finding square-triangular number into
the problem of finding integer solutions of a Pell equation. A remarkable fact
about the Pell equation is that, starting with one solution, one can generate
more solutions of the Pell equation. Here is how this is done. First, note
that the left hand side of the equation can be factored as

x2 − 2y2 = (x+ y
√

2)(x− y
√

2).

Thus, the Pell equation can be rewritten as

(x+ y
√

2)(x− y
√

2) = 1.

Next, let us take the square of both sides to see what we get. Since

(x± y
√

2)2 = (x2 ± 2xy
√

2 + 2y2)

squaring of both sides of the Pell equation gives

(x2 + 2y2 + 2xy
√

2)(x2 + 2y2 − 2xy
√

2) = 1

or, equivalently, (
x2 + 2y2

)2 − 2 (2xy)2 = 1.

Hence we have the following important observation. If (x, y) is a solution
of x2 − 2y2 = 1 then so is (S, T ) where

S + T
√

2 = (x+ y
√

2)2.

For example, since (3, 2) is a solution of x2 − 2y2 = 1, squaring of 3 + 2
√

2

(3 + 2
√

2)2 = 17 + 12
√

2

generates another solution (x, y) = (17, 12) of x2 − 2y2 = 1. This solution
corresponds to a solution (m,n) = (8, 6) of the original equation Tm = Sn.
More generally, if we have two solutions of the Pell equation, we can simply
multiply them to get a third solution. For example,

(17 + 12
√

2)(3 + 2
√

2) = 99 + 70
√

2

and we have generated yet another solution (x, y) = (99, 70) of x2−2y2 = 1.
A list of the three solutions and corresponding square-triangular numbers,
that we have just found, is given in the following table:

x y m n Sn = Tm
3 2 1 1 1
17 12 8 6 36
99 70 49 35 1225
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Thus 1225 is the third square-triangular number, so far discovered. But
is there is square-triangular number between 36 and 1225? The answer is
no. This follows from the following theorem, to be proved in the next several
sections.

Theorem 41. Any integer solution of the equation x2 − 2y2 = 1, with
positive integers (x, y) is obtained from the first solution (3, 2) by taking a
kth power

(3 + 2
√

2)k = x+ y
√

2

for some positive integer k.

In fact, the same result holds for any equation of the type x2−Dy2 = 1
if D is a non-square positive integer. If (x1, y1) is the solution with the
smallest positive x and y coordinates, then every solution (xk, yk), with
positive coordinates, is of the form:

xk + yk
√
D = (x1 + y1

√
D)k.

Note however that, for a general D, we have not yet established existence
of a non-trivial solution. In fact, even for some small value of D the first
solution can be rather large. For example, the first solution of x2−94y2 = 1
is

2143295 + 211064
√

94.

Our task, which will be accomplished in the next sections, consists of the
following three steps.

(1) Show that x2−Dy2 = 1 has a non-trivial solution (x, y) with x and
y positive integers.

(2) Show that any positive integer solution is a power of the first solu-
tion.

(3) Find an effective way to construct the first solution.

Exercises

1) By inspection, find the first positive solution of the Pell equation x2 −
6y2 = 1. Use the first solution to find the first three solutions of the equation.

2) A number Pn is called pentagonal, if Pn pebbles can be arranged in the
shape as pictured, with n pebbles along each edge. Write down a simple
formula for Pn, n-th pentagonal number, following the two steps: First find
two integers a and b such that Pn+1−Pn = an+b, and then use the formula
1 + 2 + . . .+ (n− 1) = n(n− 1)/2.
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y iiiii
P2 = 5

y y iiyyyyiiiiii
P3 = 12

y y yyyii
iyyyyyyyyyyiiiiiiii

P4 = 22

3) In this problem we will classify square-pentagonal numbers. The equation
m2 = Pn, after substituting n = (x + 1)/6, and m = y/2 becomes the Pell
equation x2 − 6y2 = 1, which has (5, 2) as a basic solution. Of course, the
powers (5 + 2

√
6)k will give all solutions to the Pell equation, but not all

of these will give rise to square-pentagonal numbers. Calculate several low
degree powers to see what is going on, and determine the first non-trivial
square-pentagonal number.

4) Classify triangular-pentagonal numbers.

3. Dirichlet’s approximation

Solving the Pell equation x2−Dy2 = 1 is closely related to approximating√
D by fractions. Indeed, the equation (x − y

√
D)(x + y

√
D) = 1 can be

rewritten as

x− y
√
D =

1

x+ y
√
D
,

and, since y ≤ x+ y
√
D, we get an inequality

|x− y
√
D| < 1

y
⇔
∣∣∣∣xy −√D

∣∣∣∣ < 1

y2
.

For example, (x, y) = (99, 70) is the third solution of the Pell equation
x2 − 2y2 = 1 and

√
2 = 1.414213 . . . ≈ 99

70
= 1.414228.

Thus, in order to show that the equation x2 − Dy2 = 1 has a non-
trivial solution, we shall first develop a method of approximating irrational
numbers by fractions and, along the way, show that the Pell equation always
has a non-trivial solution. This method is due to Dirichlet and is based on
the pigeon-hole or Dirichlet’s principle. However, due to bird flu concerns,
we shall leave pigeons out, and state the principle in terms of boxes. The
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principle says that if you put n+ 1 objects in n boxes then at least one box
contains two objects.

We shall apply this principle in the following way. Suppose that we
want to approximate, by fractions, a positive irrational number α. Let n
be a positive integer and divide the interval [0, 1) into n subintervals of the
length 1/n: [

0,
1

n

)
,

[
1

n
,

2

n

)
, . . .

[
n− 1

n
, 1

)
.

This will be our boxes! We are going to put n+ 1 numbers into these boxes.
For every integer n between 0 and n (inclusive 0 and n so there are n + 1
integers here in all) let

zj = j · α− [j · α]

where [j · α] is the greatest integer part of j · α. Then 0 ≤ zj < 1 so we
can put these numbers in the n intervals of length 1/n. By the Dirichlet
principle at least one of the n intervals will contain 2 of these numbers. Let
us work out an example with α =

√
3 and n = 5. The numbers zj are

tabulated below.

j j
√

3 zj

0 0.000 .000
1 1.732 .732
2 3.464 .464
3 5.196 .196
4 6.928 .928
5 8.660 .660

We see that the five intervals [0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8) and
[0.8, 1) receive 2, 0, 1, 2, 1 numbers zj , respectively:

{.000 and .196}, {·}, {.464}, {.660 and .732}, {.928}.
Now if zj and zi (assume that j < i) are two numbers in the same box (i.e.
an interval of width 1/n) then

|zj − zi| = |([iα]− [jα])− (i− j)α| < 1

n
.

If we set x = [jα]− [iα] and y = i− j the inequality can be rewritten as

|x− yα| < 1

n
.

Note that, by taking n larger and larger, the expression |x − yα| can be
made arbitrarily small. In particular, we have infinitely many pairs (x, y)
satisfying this inequality, for various values of n. Since y = i − j < n, the
inequality implies the following weaker, yet more practical inequality

|x− yα| < 1

y
.
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In this way we have obtained the following theorem of Dirichlet on rational
approximations of irrational numbers.

Theorem 42. Let α be a positive irrational number. Then there are
infinitely many pairs of positive integers (x, y) such that∣∣∣∣xy − α

∣∣∣∣ < 1

y2
.

Now that we have figured out a way to approximate irrational numbers
by rational numbers, let us see if this helps us to find a solution of the Pell
equation x2 − Dy2 = 1. As we have argued above, Dirichlet’s principle
implies that for every n there exist positive integers x ≤ n

√
D and y ≤ n

such that

|x− y
√
D| < 1

n
.

Since x+ y
√
D ≤ n

√
D + n

√
D = 2n

√
D, it follows that

|x− y
√
D| · |x+ y

√
D| < 2n

√
D

n
= 2
√
D.

Thus, the Dirichlet approximation guarantees that there are infinitely many
pairs (x, y) such that x2−Dy2 is an integer between −2

√
D and 2

√
D. Since

there are finitely many integers between these two numbers, there must be
a number m (also between −2

√
D and 2

√
D) such that the equation

x2 −Dy2 = m

has infinitely many integer solutions. If (x1, y1) and (x2, y2) are two solu-
tions, then the quotient

x1 + y1
√
D

x2 + y2
√
D

=
x1x2 −Dy1y2

m
+
x2y1 − x1y2

m

√
D

satisfies the equation x2 −Dy2 = 1. (As the norm of a quotient is equal to
the quotient of the norms.) However, it is not clear that the coefficients of
this numbers are integers. To assure that, we apply the Dirichlet principle
once again! We use m2 boxes Ba,b where 1 ≤ a, b ≤ m. If (x, y) is a solution
of the equation x2 − dy2 = m we put it in the box Ba,b if

x ≡ a (mod m)

y ≡ b (mod m)

Since there are infinitely many solutions there is a box containing at least
two solutions, say (x1, y1) and (x2, y2). Then

x1x2 −Dy1y2 ≡ x21 −Dy21 = m (mod m)

x2y1 − x1y2 ≡ x1y1 − x1y1 = 0 (mod m)

which guarantees that the quotient considered above has integer coefficients.
This shows that the Pell equation always has a non-trivial solution.
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Let us illustrate what we have just done with an example. The Dirichlet
approximation assures us that the equation x2 − 2y2 = m has infinitely
many solutions for some m between −2

√
2 = −2.82 . . . and 2

√
2 = 2.82 . . ..

Moreover, we can pick two solutions of x2 − 2y2 = m which are congruent
modulo m. For example, (2, 1) and (10, 7) are two solutions of x2− 2y2 = 2
which are congruent modulo 2, since 10 ≡ 2 (mod 2) and 7 ≡ 1 (mod 2).
Thus, the quotient of 10+7

√
2 and 2+

√
2 should give a solution to the Pell

equation x2 − 2y2 = 1. Indeed,

10 + 7
√

2

2 +
√

2
= 3 + 2

√
2

and (3, 2) is the first non-trivial solution of x2 − 2y2 = 1.

Exercises

1) Use the Dirichlet principle with n = 10 to find a rational approximation
of π.

4) Use the pigeonhole principle to show that there is a multiple of 2005
whose digits are 0’s and 1’s. Hint: consider the sequence 1, 11, 111, ...

4. Pell Equation: classifying solutions

Given a Pell Equation x2 − Dy2 = 1, we can order all solutions (x, y)
such that x and y are positive integers, by the size of x or y coordinate. It
does not matter whether we use x or y, since the two coordinates are tied
up by the equation x2 = 1 +Dy2. The solution with the smallest positive x
and y is called the first solution of the Pell equation.

Consider now the Pell equation x2−2y2 = 1. By inspection we find that
(3, 2) has the smallest positive x and y coordinate. The main result of this
section is to show that the first solution generates all other solutions of the
Pell equation.

Theorem 43. Any integer solution (u, v) of the equation x2 − 2y2 = 1,
with u and v positive satisfies

u+ v
√

2 = (3 + 2
√

2)k

for some positive integer k.

Proof. The idea is to keep dividing u + v
√

2 by 3 + 2
√

2 until we get
3 + 2

√
2. Of course, if (u, v) = (3, 2) there is nothing to prove, so assume

that (u, v) is different form (3, 2), which means that u > 3. Dividing u+v
√

2
by 3 = 2

√
2 gives

u+ v
√

2

3 + 2
√

2
= (u+ v

√
2)(3− 2

√
2) = (3u− 4v) + (3v − 2u)

√
2 = u1 + v1

√
2.
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Notice that (u1, v1) is another solution of x2 − 2y2 = 1, since it is obtained
by multiplying two solutions: u + v

√
2 and 3 − 2

√
2. We claim that it has

the following properties:

(1) u1 > 0.
(2) v1 > 0
(3) u1 < u.

The first inequality is easy. Notice that if x2 − 2y2 = 1 then x2 > 2y2

or x >
√

2y. Thus

u >
√

2 · v and 3 >
√

2 · 2.
Multiplying this two inequalities gives 3u > 4v or 3u − 4v > 0 which is
exactly what we want, since u1 = 3u− 4v.

Next, we deal with the second inequality v1 > 0. This is the trickiest
part. However, we still have not used the fact that (3, 2) is the solution of
x2 − 2y2 = 1 with the smallest positive x and y coordinates. We use a bit
of geometry to exploit this fact.

-

6

�
�
�
�
�
�
�
�
�
�

s
s

s

u3

The solutions (3, 2) and (u, v) sit on a branch of the hyperbola x2−2y2 =
1 contained in the first quadrant, which has the line

y =
x√
2

as an asymptote. Since u > 3, the point (u, v) is closer to the asymptote
then the point (3, 2), as the picture indicates. It follows that the slope of
the vector (u, v) is bigger then the slope of the vector (3, 2):

v

u
>

2

3

which is equivalent to 2v−3u > 0. This shows that v1 is positive, as claimed.
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It remains to deal with the third inequality. This is easy. Since

u+ v
√

2 = (u1 + v1
√

2)(3 + 2
√

2) = (3u1 + 4v1) + (3v1 + 2u1)
√

2

we see that u = 3u1 + 4v1. Since we have already shown that u1 and v1 are
positive, u must be bigger than u1.

Summarizing, starting with a positive solution (u, v) different from (3, 2),
we constructed another positive solution (u1, v1) with u1 < u. If u1 > 3, we
can repeat this process and get another positive solution (u2, v2) such that
u2 < u1. Continuing in this fashion, as long as we can, we get a sequence of
positive solutions (ui, vi), i = 1, 2, . . . k − 1 such that

u > u1 > u2 > . . . > uk−1

and ui > 3 for all i < k − 1 and uk−1 ≤ 3 (so we cannot continue with this
construction). Since (uk−1, vk−1) is a positive solution with uk−1 ≤ 3, it has
to be (3, 2). Thus

(u+ v
√

2)(3 + 2
√

2)−k+1 = 3 + 2
√

2

or

u+ v
√

2 = (3 + 2
√

2)k.

�

Of course, Theorem 43 holds for any Pell equation. All solutions with
positive coordinates are obtained from the first one. So, how does one find
the first solution of x2−Dy2 = 1? This might not be so easy. For example,
the first solution of x2 − 94y2 = 1 is

2143295 + 211064
√

94,

In particular, the first solution might not be easy to find by guessing even
for small values of D. However, the first solution can be computed using
the Continued Fractions algorithm, and this will be discussed in the next
section.

5. Continued Fractions

In this section we shall describe, without a proof, an effective way to
construct the first solution of the Pell equation x2 −Dy2 = 1. We assume
some basic knowledge of determinants.

The method is based on the Continued Fractions algorithm which, we
recall, is defined as follows:

(1) Let α > 1. Put β = α − [α] where [α] is the greatest integer part
of α.

(2) If β = 0 stop, else put α1 = 1/β and go to (1).
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As we discussed in the first chapter, the algorithm does not stop unless
α is a rational number. Thus, starting with an irrational number α, the the
algorithm generates a sequence of irrational numbers

α, α1, α2, . . .

and the sequence of integers

[α], [α1], [α2] . . . .

The name continued fraction comes from the fact that we can write down α
as the following sequence of expressions:

α = [α] +
1

α1
= [α] +

1

[α1] + 1
α2

= . . .

A continued fraction expansion is called purely periodic with period p if
αp = α. Not that this implies that αp+1 = α1, αp+2 = α2 and so on. The
key fact needed to find the first solution of the Pell equation is:

If D is not a square then the continued fraction of
√
D + [D] is purely

periodic.

A proof of this fact can be found in the book by Davenport (REF-
ERENCE). We only give some examples here. First, take D = 2, then
α =
√

2+[
√

2] =
√

2+1. The first loop of the continued fractions algorithm
gives

β =
√

2 + 1− [
√

2 + 1] =
√

2− 1

and

α1 =
1

β
=

1√
2− 1

·
√

2 + 1√
2 + 1

=
√

2 + 1.

This implies that α1 = α and the fraction has the period 1! A similar
calculation can be performed easily for

√
D + [

√
D] with small D. We give

a short list of answers here. The right column of the table gives the full
period of integers

[α], . . . , [αp−1].

D

2 2
3 2, 1
5 3
7 4, 1, 1, 1

11 6, 3
13 6, 1, 1, 1, 1
17 8
19 8, 2, 1, 3, 1, 2
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We are now ready to explain how to obtain the first solution of the Pell
equation using the continued fraction expansion. If p is the period, then we
can expand

α = [α] +
1

. . . + 1
[αp−1]+

1
α

For example, if α =
√

3 + [
√

3], then p = 2, and we have

√
3 + 1 = 2 +

1

1 + 1√
3+1

.

We claim that this identity can be rewritten in the form

√
3 =

a
√

3 + b

c
√

3 + d

where a, b, c and d are integers. This is accomplished by working up from
the last fraction on the bottom, as follows:

√
3 + 1 = 2 +

1

1 + 1√
3+1

= 2 +
1
√
3+2√
3+1

= 2 +

√
3 + 1√
3 + 2

= 1 +
2
√

3 + 3√
3 + 2

(note that we never “rationalize” or use (
√

3)2 = 3). After subtracting 1
from both sides, we get

√
3 =

2
√

3 + 3√
3 + 2

.

The coefficients a, b, c and d of the fraction on the right give a 2× 2 matrix
of determinant 1: ∣∣∣∣ 2 3

1 2

∣∣∣∣ =

∣∣∣∣ 2 3 · 1
1 2

∣∣∣∣ = 22 − 3 · 12 = 1

We recognize here (2, 1), the first solution of the Pell equation x2−3y2 =
1. Is this an accident? Let us work out another example, D = 6. The
continued fraction of

√
6 + [

√
6] =

√
6 + 2 has the period of length 2:

√
6 + 2 = 4 +

1

2 + 1√
6+2

.

Again, this equation can be rewritten as

√
6 =

5
√

6 + 12

2
√

6 + 5

and the coefficients in the fraction on the right hand side give a 2×2 matrix
with determinant 1:∣∣∣∣ 5 12

2 5

∣∣∣∣ =

∣∣∣∣ 5 6 · 2
2 5

∣∣∣∣ = 52 − 6 · 22 = 1

Again, we get the first solution (5, 2) of the Pell equation x2 − 6y2 = 1.
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More generally, using the period of the continued fraction for
√
D+[

√
D]

we can get an expression

√
D =

a
√
D +Dc

c
√
D + a

such that the determinant∣∣∣∣ a Dc
c a

∣∣∣∣ = a2 −D · c2

is 1 if the period of the continued fraction has even length and -1 if the
period has odd length. In the later case, we get a solution (x0, y0) of the

equation x2 − Dy2 = −1 from which, by squaring x0 + y0
√
D, we get the

first solution of x2 −Dy2 = 1.

Exercises

1) Compute the period of the continued fraction of
a)
√

15 + [
√

15].
b)
√

19 + [
√

19].

2) Use the exercise 1) to find the first solution of
a) x2 − 15y2 = 1.
b) x2 − 19y2 = 1.

3) The continued fraction algorithm for a number α > 1 is purely periodic
of period 2 such that [α] = [α2] = . . . = 1 and [α1] = [α3] = . . . = 2. Find
the number α.





CHAPTER 10

Cryptography

1. Diffie-Hellman key exchange

A cypher is a method of making a message unreadable to the general
public. There are two aspects of any cypher: The encryption procedure
and the decryption procedure. One of the simplest cyphers is the shift
(or Caesar) cypher. Here the encryption procedure consists of shifting the
letters in a message by a fixed number of spots in the alphabetical order.
Thus here the key is a positive integer k. For example, if k = 5 then, in
order to encrypt a message we shift the letters of the alphabet

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

by five places in the usual ordering. Thus A 7→ F , B 7→ G, C 7→ H and so
on. For example, the word OLYMPIC is encrypted as

TQDRUNH

On the other hand, if we receive an encrypted message

ITBSMNQQ

then, by shifting the letters by five places back we decrypt the message as

DOWNHILL

Since the encryption and decryption procedures are essentially the same the
shift cypher is an example of a symmetric cypher. Those who know how to
encrypt a message are also those that can decrypt the message.

Of course, this encryption procedure is very easy to break, since there
exist only 26 possible sifts (keys). A slight improvement would be, for ex-
ample, to break up the set of 26 letters into 2 groups of 14 letters, and then
to apply two different shifts k1 and k2 for each of the two groups of letters.
This is already more secure since there are 13× 13 = 196 possible combina-
tions. The two keys can be represented by the same number k as follows.
If anan−1 · · · a2a1 are the digits of k then we can build two numbers from k

135
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by using the digits of k as follows:{
k1 = . . . a3a1

k2 = . . . a4a2.

Thus the key in this case would also be given by one (secret) number k. Of
course, we can do even better, by dividing 26 letters into 4 groups, say of
6, 7, 6 and 7 letters and perform an independent shift for each group. This
gives 6× 7× 6× 7 = 1764 possible combinations.

Still, if we were to use a variant of the shift key, we would be far from
secure, especially in the days of fast computers. Indeed, the frequency of
letters in three well known English language novels

Alice in Hamlet Treasure
Wonderland Island

space 19.75% 15.70% 18.61%
E 9.40% 9.04% 9.28%
T 7.43% 7.11% 6.96%
A 6.00% 5.87% 6.54%
O 5.69% 6.53% 6.03%

indicates that the letter E appears most often, followed by the letters T,
A and O. Thus, a repeated use of any permutation cypher would almost
certainly doom it.

A simple, but efficient idea, would be to change the key often. But
how to accomplish an exchange of a new key if the present key has been
broken? That is precisely what the idea of a public key exchange of Diffie
and Hellman is about.

The Diffie-Hellman key exchange was developed around 1970 and is
based on the discrete logarithm. Pick a prime p and a primitive root g
modulo p. These numbers can be made public. In practice p has to be
large, but here we shall take p = 29 and g = 2. Here is how Caesar and
Cleopatra would perform a secure key exchange over unsecure channels:

(1) Caesar thinks of a (secret) number x, for example x = 10, and
calculates X = 2x modulo 29:

210 ≡ 9 (mod 29)

He sends X = 9 to Cleopatra over an unsecured channel (the whole
world can know this number).

(2) Cleopatra thinks of a (secret) number y, for example y = 18, and
calculates Y = 2y modulo 29:

218 ≡ 13 (mod 29)

She sends Y = 13 to Caesar over an unsecured channel (the whole
world can know this number).
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(3) Caesar receives the number Y from Cleopatra and calculates the
key modulo 29:

k ≡ Y x ≡ 7 (mod 29)

(4) Cleopatra receives the number X from Caesar and calculates the
key modulo 29:

k ≡ Xy ≡ 7 (mod 29)

The key k is the same for Caesar and Cleopatra because

(2x)y ≡ (2y)x (mod 29).

With the key in hands, our heroes can exchange a message. Say, for example,
that Cleopatra’s message starts with MEET ME IN ... which she encrypts
using the key k = 7 into

TLLA TL PU

At this point, in order to make the exchange of messages more secure,
Cleopatra decides to exchange the key once more. She sends the num-
ber Y = 7 to Caesar and receives the number X = 13 from him. She then
calculates the key and sends the rest of the message which, encrypted, reads

XIBUXKAOFX

In order to decipher the rest of the message we need to figure out the key.
Despite the fact that we have the numbers X and Y , we cannot calculate
the key k since we do not know x or y, the discrete logarithms of X and Y
modulo 29 with respect to the base 2. While it is easy to calculate a power
of 2 modulo any prime p, there is no known algorithm to perform the inverse
operation! This is the strength of the Diffie-Hellman key exchange.

Of course, since p = 29 is quite small, it is possible to find out the
discrete logarithm simply by listing all powers of 2:

I 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2I 2 4 8 16 3 6 12 24 19 9 18 7 14 28

The list shows that Cleopatra has taken y = 12 in the second key ex-
change. With the number y in hand, we can calculate the key

k ≡ Xy ≡ 1312 ≡ 23 (mod 29).

Thus we have to shift the letters in XIBUXKAOFX by 23 places backward,
which is the same as 3 places forward. Decrypting gives

ALEXANDRIA

Summarizing, the message MEET ME IN ALEXANDRIA has been en-
crypted into TLLA TL PU XIBUXKAOFX using the symmetric key ex-
change twice.
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The Diffie-Hellman key exchange was published by Whitfield Diffie and
Martin Hellman in 1976. Since the idea is based on concept developed by
Ralph Merkle the key is sometimes called the Diffie-Hellman-Merkle key. In
any case, all three are credited in the U. S. patent, which is now expired.

Exercises

1) A shift cypher key is exchanged using the Diffie-Hellman method with
g = 5 and p = 47. The actual numbers exchanged were X = 38 and Y = 3.
Find that key.

2) Using the key in the previous exercise decipher the message:

EQPITCVWNCVKQPU

2. RSA Code

The shift cypher, discussed in the previous lecture, is an example of a
symmetric cypher. This means that the encryption and decryption proce-
dures are essentially the same. In this lecture we introduce another type
of cypher, the RSA cypher. It is an assymetric cypher, meaning that the
cypher, once we have fixed a key, is used for a secure flow of information in
only one direction. In a nutshell, the RSA cypher is based on the fact that
it is very easy to multiply numbers but not easy to factor them.

In order to explain the RSA cypher, we shall restrict the alphabet to nine
letters: E, A, O, H, L, M, N. K and I. This is done for practical reasons,
only. It will allow us to work with small numbers and to do computations
by hand. There are plenty of words that can be written using these letters.
For example, the Hawaiian alphabet contains only twelve letters: these nine,
U, P and W. The first step is to replace the letters by numbers:

E A O H L M N K I
1 2 3 4 5 6 7 8 9

This table itself is a symmetric cypher. Letters in every word can be replaced
by the numbers (encrypting) and then words can be recovered by reverse
substitution (decrypting). The table, of course, has to be kept secret, if
there is any use of this. This code, however, is rather easy to break. We
shall do much better in a moment.

King Kamehameha wants to create a secure channel to receive messages.
The King takes two (large) prime numbers p and q which he multiplies to
get a composite number m = p ·q. He also picks a number e relatively prime
to ϕ(m) = (p− 1)(q − 1). Then he announces to friends and foes alike that
his public or encryption key is the number e with the modulus m. However,
he keeps proprietary the factorization m = p · q on which his private or
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decryption key is based. Assume, for example, that the announced values
of the public key are

m = 1517 and e = 11.

Encryption procedure: Assume, for example, that a general wants to
send to the King a message which starts with the word

KONA

The first step is to convert the letters to their number equivalents, given
by the above table. This gives the following sequence of numbers

8372.

The next step is to break up the sequence 8372 into smaller subsequences
such as:

83, 72 or 837, 2 or 8, 372, ...

The important thing here is that every subsequence consists of ≤ 3 digits
because m has 4 digits. Assuming, for example, that the general picked 83
and 72, the next step is to replace 83 and 72 by their e-th power modulo m.
With our choices, this is 8311 and 7211 modulo 1517:

8311 ≡ 821 (mod 1517)

7211 ≡ 1097 (mod 1517)

Of course, an efficient way to do this is by successive squaring:

831 ≡ 83 (mod 1517)
832 ≡ 821 (mod 1517)
834 ≡ 493 (mod 1517)
838 ≡ 329 (mod 1517)

which gives 8311 = 838 ·832 ·83 ≡ 329 ·821 ·83 ≡ 821 (mod 1517). Similarly,

721 ≡ 72 (mod 1517)
722 ≡ 633 (mod 1517)
724 ≡ 201 (mod 1517)
728 ≡ 959 (mod 1517)

which gives 7211 = 728 · 722 · 72 ≡ 959 · 633 · 72 ≡ 1097 (mod 1517).

In this way the general has encrypted the word KONA by a sequence of
two numbers 821 and 1097. The second word of the message - which we have
not revealed yet - is encrypted using the same procedure into a sequence 33,
108. Then the whole message

821, 1097, 33, 108

is sent to the King by an unsecured channel.

Decryption procedure: The King receives the encrypted message 821,
1097, 33 and 108. In order to recover the original message the King needs
to solve the following four equations:
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x11 ≡ 821 (mod 1517)
x11 ≡ 1097 (mod 1517)
x11 ≡ 33 (mod 1517)
x11 ≡ 108 (mod 1517)

The (unique) solutions to these four equations are given by 821d, 1097d

33d and 108d where d is the inverse of 11 modulo ϕ(1517). This was explained
earlier, but we repeat the argument here. If d is an inverse of 11 modulo
ϕ(m) then 11d = 1 + kϕ(1517) for some integer k. Then

(x11)d = x11d = x · xkϕ(1517) ≡ x (mod 1517)

since xϕ(1517) ≡ 1 (mod 1517). Thus if we take the congruence x11 ≡ 821
(mod 1517) to the d-th power, we obtain

x ≡ 821d (mod 1517)

as claimed. But d cannot be calculated unless ϕ(1517) or, equivalently, the
factorization of 1517 is known. This information, however, is only known to
the King since he has created the cypher:

1517 = 37 · 41,

Thus, he knows that ϕ(1517) = 36 · 40 = 1440 and the Euclidean algorithm
applied to 1440 and 11 gives

1440 = 130 · 11 + 10 and 11 = 1 · 10 + 1.

These two equations, combined, give 131 · 11 − 1440 = 1. It follows that
d = 131 is the inverse of 11 modulo 1440. The number d is called the
decryption or private key. Of course 821131 and 1097131 give back 83 and 72,
so let’s see what the rest of the message is. Calculating consecutive squares
gives

331 ≡ 33 (mod 1517)
332 ≡ 1089 (mod 1517)

332
2 ≡ 1144 (mod 1517)

332
3 ≡ 1082 (mod 1517)

332
4 ≡ 1117 (mod 1517)

332
5 ≡ 715 (mod 1517)

332
6 ≡ 1513 (mod 1517)

332
7 ≡ 16 (mod 1517)

so

33131 = 332
7 · 332 · 33 ≡ 16 · 1089 · 33 ≡ 49 (mod 1517).
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Also,
1081 ≡ 108 (mod 1517)
1082 ≡ 1045 (mod 1517)

1082
2 ≡ 1302 (mod 1517)

1082
3 ≡ 715 (mod 1517)

1082
4 ≡ 1513 (mod 1517)

1082
5 ≡ 16 (mod 1517)

1082
6 ≡ 256 (mod 1517)

1082
7 ≡ 305 (mod 1517)

which gives

108131 = 1082
7 · 1082 · 108 ≡ 305 · 1045 · 108 ≡ 53 (mod 1517).

Thus the second part of the message decrypted is 49, 53 which corresponds
to HILO. (The King, unfortunately, will have to do all these calculations
himself, if he is to keep the decryption key secret.)

Notice that the public key created by the King is used only for a secure
transmission of messages to the King. If the King wants to send a message
back to his general, or to anyone else for that matter, he can do so as long as
the intended receiver has his or her own public key! This, truly a remarkable
feature of RSA, has added a completely new dimension to cryptography.

Digital Signature. RSA has an additional security feature that allows
identification of the sender. Assume, for example, that the King wants to
send a message to the Queen Kea Lani. Of course, he can do that se-
curely using Queen’s public key. But how can she be sure that the message
was sent by the King and not by an impostor? (That would be an exam-
ple of a so called third party attack.) This problem is resoved by adding
King’s digital signature to the message. The digital signature is created
as follows. First, the word KAMEHAMEHA is replaced by a sequence of
numbers 826, 1426, 142 using our substitution scheme. Then King’s digital
signature is the sequence

X = 826131, Y = 1426131, Z = 142131

computed modulo 1517, where the exponent used is d = 131, King’s private
key. The King signs the message to the Queen by including his digital
signature in the message, encrypted using Queen’s public key. After the
Queen decrypts the message she will recover King’s digital signature X,Y, Z.
She then uses King’s public key e = 11 to compute X11, Y 11, Z11 modulo
1517. These three numbers should be 826, 1426, 142 if the King was the
sender.

The RSA is named after Rivest, Shamir and Adelman. In 1977 they
challenged mathematical community to decipher a message based on the
modulus n = pq that is 129 digits long. In 1994, after seventeen years,
Atkins, Graff, Lenstra and Leyland finally succeeded in factoring n.
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Exercises

1) With m = 1517 and e = 11, decipher the message:

1373 1149 108

Express the final answer in terms of our nine letter alphabet.

2) Encypt KO-NA using the RSA cypher with modulus m = 1517 and the
encryption key e = 7.

3) An RSA cypher has modulus m = 4189 and the encryption key e = 11.
Find the decryption key.

3. ElGamal Code

El Gamal is another public key cypher. It is based on the Diffie-Hellman
key exchange. Again, assume that King Kamehameha wants to create a
secure channel to receive messages. The King takes a large prime number
p and an integer g of large order modulo p. Of course, the largest possible
order modulo p is p− 1 - for primitive roots - but we do not insist that g is
a primitive root. Then the King picks a secret number x, and computes

X ≡ gx (mod p).

The triple (p, g,X) is made public, while the King keeps x secret. For
example, assume that the numbers are p = 131, g = 2 and x = 37. Then

24 ≡ 16 (mod 131)
28 ≡ −6 (mod 131)
216 ≡ 36 (mod 131)
232 ≡ 117 (mod 131)

which gives 237 = 232 · 24 · 2 ≡ 117 · 16 · 2 ≡ 76 (mod 131). Thus, the
announced triple is

(p, g,X) = (131, 2, 76).

Encryption procedure: Unlike the RSA code, the encryption procedure
here is not canonical. The encryptor needs to pick a (secret) number y which
is used to calculate two numbers:

Y ≡ gy (mod p)

and

k ≡ Xy (mod p)

(The number y should be large and relatively prime to p− 1, if there is any
use of this.) The number k is now the encryption key. Assume, for example,
that y = 19. Then

Y ≡ 219 ≡ 26 (mod 131)
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In order to calculate the key k ≡ 7619 (mod 131) we use the method of
successive squares:

762 ≡ 12 (mod 131)
764 ≡ 13 (mod 131)
768 ≡ 38 (mod 131)
7616 ≡ 3 (mod 131)

Thus k ≡ 7619 ≡ 7616 · 762 · 76 ≡ 3 · 12 · 76 ≡ 116 (mod 131).
Assume, for example, that we want to encrypt a nine letter word with

the first four letters

HALE

The first step is to convert the letters to their number equivalents given
by the table introduced in the previous sections:

E A O H L M N K I
1 2 3 4 5 6 7 8 9

In particular, HALE is converted into

4251

The next step is to break up the sequence 4251 into smaller subsequences
each of which is less then p = 131. Assume, for example, that 4251 is broken
into 42 and 51. Then the next step is to replace 42 and 51 by 42 × k and
51× k modulo p. In our example, this would be

42× 116 ≡ 25 (mod 131)

51× 116 ≡ 21 (mod 131)

In this way HALE is encrypted by a sequence of two numbers 25, 21. The
second part of the word - which we have not reveled yet - is encrypted using
the same procedure into a sequence 101, 80, 6. Then the whole message,
including Y = 26 as the header

Y ; 25, 21, 101, 80, 6

is sent to the King by an unsecured channel.

Decryption procedure: The King receives the encrypted message

26; 25, 21, 101, 80, 6.

In order to recover the original message the King needs to compute the key
k which is given by the formula

k ≡ Y x ≡ 2637 (mod 131).
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The key k is efficiently calculated using consecutive squares:

262 ≡ 21 (mod 131)
264 ≡ 48 (mod 131)
268 ≡ 77 (mod 131)
2616 ≡ 34 (mod 131)
2632 ≡ 108 (mod 131)

This gives k ≡ 2637 ≡ 2632 · 264 · 26 ≡ 108 · 48 · 26 ≡ 116 (mod 131), exactly
the same as the encryptor’s k. The final step is now to divide the segments of
the received message by 116. Since the multiplicative inverse of 116 modulo
131 is 96,

25× 96 ≡ 42 (mod 131)
21× 96 ≡ 51 (mod 131)
101× 96 ≡ 2 (mod 131)
80× 96 ≡ 82 (mod 131)
6× 96 ≡ 52 (mod 131)

and the message is decrypted as 42, 51, 2, 49 and 53 that gives the word

HALEAKALA

The sender may want to change the choice of y often. If this is done by
a computer we need a reliable random number generator. More generally,
the following four natural problems appear and need to be considered in the
cryptography:

(1) Computing discrete logarithm.
(2) Primality testing.
(3) Factoring attacks.
(4) Random number generation.

Primality testing and factoring are the main topics of the next chapter.
We finish this section with an approach to computing discrete logarithms.
Recall that ` is the discrete logarithm of a with respect to g, a primitive
root modulo p, if

a ≡ g` (mod p).

Given a, one way to compute the discrete logarithm ` is to start listing all
possible powers g, g2, g3 . . . of g. The expected number of steps in this way
is (p− 1)/2. There is a better way, called the baby-step, giant-step method.
It takes less than 2

√
p number of steps. To explain, let m be the smallest

integer such that p− 1 ≤ m2. (Note that m is equal to
√
p− 1 rounded up

to the nearest integer.) Then `, since it is less than p, can be written as

` = m · i+ j

for two integers i and j each of which is less than m. The first step in the
algorithm is to list the list first m powers of g (These are the baby steps of
the method.):

1, g1, . . . gm−1.
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The next step is to start computing a · (g−m)i for i = 1, 2 . . .. (These are
the giant steps of the method.) Since

gj = a · (g−m)i

for some pair of integers i and j less than m, eventually, a · (g−m)i will show
up on the list.

Let’s see how this works on an example. Take p = 29 and g = 2. Assume
that we want to compute the discrete logarithm of a = 11. We can take
here m = 6. Then the list of the first 6 powers of 2 modulo 29 is

j 0 1 2 3 4 5
2j 1 2 4 8 16 3

Also 26 ≡ 6 (mod 29) and 5 is the inverse of 6 modulo 29. Now we need to
compute 11 · 5, 11 · 52 etc modulo 29 until we get a number on the first list:

i 0 1 2 3 4 5
11 · 5i 11 26 14 12 2

We see that 2 is the first number on the second list which has already
appeared on the first list. Thus

11 · 54 ≡ 21 (mod 29)

or
11 ≡ (26)4 · 21 ≡ 225 (mod 29).

This shows that the discrete logarithm of 11 is 25.

Exercises

1) Let p = 103, g = 2 and x = 47. Compute

X ≡ 247 (mod 103).

2) Using the p = 103, g = 2 and X from the previous lecture, use the
ElGamal cypher with y = 31 to encrypt KO-NA. (Substitute KO-NA by
83-72.)

3) Use the baby-step giant-step algorithm to find ` (the discrete logarithm)
such that

2` ≡ 7 (mod 53).

4) A shift cypher k is exchanged using the Diffie-Hellman method with
p = 421 and g = 2. The numbers exchanged over a public channel are
X = 229 and Y = 247. Using the giant-step - baby-step method compute
the discrete logarithm of X (or of Y ) to find the two digit key k = k2k1 and
decipher following the message which has been encrypted by shifting first 13
letters (A - M) by k1 + 2 places and the second 13 letters (N - Z) by k2 + 3
places:

JQFEYUOJX
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Note: shifting first 13 letters by 2 places, for example, means that M shifts
to B.



CHAPTER 11

Primality testing

1. Miller Rabin test

In this section we discuss a method to determine whether an odd integer
n is composite or prime. To that end, pick an integer a < n. If n is prime
then the Fermat Little Theorem implies that

an ≡ a (mod n).

If this congruence is not satisfied, then n is composite, and the number
a is called a witness. Let’s how this works with a = 2 and several small
(composite) odd numbers:

n 9 15 21 25 27 33
2n 6 8 17 14 25 16

In each of these examples taking 2 to the power n modulo n is different
from 2, confirming what we already knew - that n is composite. Unfortu-
nately, while this method is very efficient to detect a composite number,
it does not work in every case. Moreover, even if we replace 2 by another
integer, the method may still not work since there are odd numbers n such
that

an ≡ a (mod n)

for all numbers a. Positive integers with this property are called Carmichael
numbers. The first Carmichael number is

561 = 3 · 11 · 17.

It is not difficult to see that a561 ≡ a (mod 561) for all integers a. Indeed,
since a number is divisible by 561 if and only if it is divisible by the three
factors 3, 11 and 17, the congruence a561 ≡ a (mod 561) is equivalent to the
following three congruences:

a561 ≡ a (mod 3)
a561 ≡ a (mod 11)
a561 ≡ a (mod 17)

147
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As we shall see in a moment, these congruences hold since ϕ(3) = 2, ϕ(11) =
10 and ϕ(17) = 16 divide 560. Consider, for example, the third congruence.
Since 560 = 16 · 35 we can rewrite a561 − a as

a561 − a = a(a560 − 1) = a((a16)35 − 1).

If 17 divides a then 17 divides a561− a. If 17 does not divide a then a16 ≡ 1
(mod 17), by the Fermat Little Theorem. Hence

(a16)35 ≡ 135 ≡ 1 (mod 17)

and 17 again divides a(a560− 1). This argument, of course, works for 3 and
11, since

560 = 2 · 280 and 560 = 10 · 56.

This shows that 561 is a Carmichael number. The next four Carmichael
numbers are

1105, 1729, 2465, and 2821.

It is interesting to note that until recently it was not known whether there
are infinitely many Carmichael numbers. Then, in 1994, Alford, Granville
and Pomerance showed that there are infinitely many Carmichael numbers.
Carmichael numbers are characterized by the following (Korselt’s) criterion:

Proposition 44. A number n > 2 is a Carmichael number if and only
if the following three conditions are true:

(1) The number n is odd.
(2) The number n is square free. This means that p2 does not divide n

for any prime p.
(3) For every prime factor p of n, p− 1 divides n− 1.

Proof. Obviously, any number that satisfies the two conditions is a
Carmichael number. The verification is exactly the same as what we did for
561. So assume that n is a Carmichael number. Then an ≡ a (mod a) for
any integer a. To prove (1), take a = −1. Then

(−1)n ≡ −1 (mod n)

which forces n to be odd since n > 2. This proves (1). To prove (2), let pe+1

is the largest power dividing n. We need to show that e = 0. Take a = pe.
Then

(pe)n ≡ pe (mod n).

This implies that n, and therefore pe+1, divides pen − pe = pe(pe(n−1) − 1).

This implies that p divides pe(n−1) − 1 and this is possible only if e = 0.
This verifies (2). It remains to prove (3). Let a be a primitive root modulo
p. Then

an ≡ a (mod p)

implies an−1 ≡ 1 (mod p). Now recall that if G is any group and g an
element in G such that gm = 1 then the order of g divides m. We can apply
this to our situation, where G = (Z/pZ)×, g = a and m = n− 1. The order
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of a is p− 1 since a is a primitive root. It follows that p− 1 divides n− 1.
The proposition is proved. �

Although an ≡ a (mod n) holds for all a for some composite integers n
there is a way to go around this problem, as given by the Miller Rabin test.
The idea behind the Miller Rabin test is very simple, and exploits the fact

that a
n−1
2 must be 1 or −1 if n is a prime number and a < n. We are now

ready to state the Rabin-Miller test.

Theorem 45. Let n be an odd integer. Write n− 1 = 2k · q with q odd.
If there exists an integer a < n such that

(1) aq 6≡ 1 (mod n)

(2) a2
iq 6≡ −1 (mod n) for all i = 0, 1, . . . , k − 1,

then n is composite.

Proof. In order to prove this theorem, we need to show that if n is
prime then one of the two conditions fails. If n is prime, then for any a < n

we have an−1 = a2
k·q ≡ 1 (mod n). Next, consider the sequence

aq, a2q, a4q, . . . , a2
k−1q, a2

kq.

Note that each number in the sequence is the square of the previous. Let

a2
iq be the first, from the left, congruent to 1 modulo n. If this happens

for i = 0 then the first condition fails. Otherwise, there are two consecutive
numbers on the list such that

a2
i−1q 6≡ 1 (mod n)

and

a2
iq ≡ 1 (mod n)

Since Z/nZ is a field −1 is the only number different from 1 whose square
is 1. This implies that

a2
i−1q ≡ −1 (mod n)

which shows that the second condition fails. Summarizing, assuming that n
is prime we have shown that one of the two condition fails for every a. This
completes the proof. �

Let’s see how this works with n = 561. Then 560 = 24 · 35. take a = 2.
Then

235 ≡ 263 (mod 561)

which shows that the first condition is satisfied. Further, by successive
squaring,

2632 ≡ 166 (mod 561)
1662 ≡ 67 (mod 561)
672 ≡ 1 (mod 561)
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which shows that the second condition is satisfied as well. The test implies
that 561 is composite.

Of course, we have not answered yet an important question. If n is a
composite number does there exists an a which satisfies the conditions of
the Miller-Rabin test? (Such number a is called a strong witness to compos-
iteness of n.) After all, the Miller-Rabin test has been introduced precisely
because of the lack of witnesses for some composite numbers. Luckily, the
answer is yes. In fact, without giving a proof, we shall state that for any
composite number n, more than 75% of integers a modulo n are strong wit-
nesses. Thus if, for example, we pick randomly 5 integers modulo n, the
chance that none of them is a strong witness is less than

1

45
<

1

1, 000
.

In other words, if the test fails to show that n is composite for 5 choices of
a, then there is a good chance (99.9%) that n is prime.

Exercises

1) Calculate 3n modulo n for the following 10 odd numbers: n = 5, 7, 9, . . . 23.
Partition the 10 numbers into two groups: One consisting of n such that 3n

is congruent to 3 modulo n, and the other such that 3n is not congruent to
3 modulo n.

2) The smallest Carmichael number is 561. Use Korselt’s criterion to check
that

1105, 1729, 2465, 2821

are Carmichael numbers. These four and 561 are the first five Carmichael
numbers.

3) Use Korselt’s criterion to determine which of the following numbers is a
Carmichael number:

a) 3457
b) 5329
c) 6601
d) 8911
e) 9011

4) Use the Miller-Rabin test to show that following numbers are composite:
a) 899.
b) 3599.
c) 427.
d) 30227.
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2. p− 1 method

We now turn our attention to the problem of factoring a large composite
number n which is a product of two large primes. Of course, there is no
universal algorithm - otherwise the RSA cypher would not be secure - but
there are efficient algorithms which work in certain situations. One such
algorithm is the method introduced by J. Pollard in 1975. This method
works well if the number n has at least one prime factor p such that p − 1
is composed of small primes. If that is the case, then p − 1 divides B! =
1 · 2 · . . . ·B for a relatively small integer B. For example, let p = 17. Then

17− 1 = 16 = 24.

Thus, 17 − 1 is a product of small primes, and we can take B = 6, as 6! is
the smallest factorial divisible by 17− 1 = 16.

In any case, if p−1 divides B! and a is a positive integer relatively prime
to p then

aB! ≡ 1 (mod p)

by Fermats’ Little Theorem. This fact will ensure that the algorithm works,
or at least stops in a small number of steps. A version of this algorithm is
as follows:

Pick a small number a such as a = 2. If a is not relatively prime to n
then we have found a factor of n. Otherwise, starting with a1 = a use the
recursion formula

ai ≡ aii−1 (mod n)

to construct a sequence of numbers a2, a3, . . . until

d = gcd(ai − 1, n) 6= 1.

There are two possible outcomes here. If d 6= n then we have found a factor
of n. If d = n then the algorithm fails and we need to restart with a different
a.

We remind the reader that, for every i, gcd(ai − 1, n) is efficiently com-
puted using the Euclidean algorithm. The first issue with this algorithm,
as well as with any other, is whether it stops in finitely many steps. To see
this, let p be a prime factor of n and B a positive integer such that p − 1
divides B. We claim that the algorithm stops in less than B steps. Indeed,
note that ai is obtained by first squaring a, then cubing the square, and so
on. Therefore ai can be expressed by

ai ≡ ai! (mod n).

Since p− 1 divides B!, by Fermat’s Little Theorem,

aB ≡ aB! ≡ 1 (mod p).

This shows that p divides gcd(aB − 1, n) and the algorithm stops in less
than B steps. In particular, if B is small then the algorithm produces a
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non-trivial gcd(ai − 1, n) in a small number of steps. Note that B could be
small only if p− 1 is not divisible by a large prime.

Of course, for a given a, it is possible that the algorithm stops after a
small number of steps but it fails to factor n if the first non-trivial greatest
common divisor of ai − 1 and n is n. In order to understand better this
issue, let us work out an example.

Example: We apply the algorithm to n = 901. We start with and a = 2.
The first step. We compute

a2 ≡ 22 ≡ 4 (mod 901).

Next, we compute the greatest common divisor of a2− 1 = 3 and 901. This
is done using the Euclidean algorithm. Since

901 = 300 · 3 + 1
3 = 3 · 1 + 0

the greatest common divisor of 3 and 301 is 1. We go to the second step.
We compute

a3 ≡ 43 ≡ 64 (mod 901).

Since
901 = 14 · 63 + 1
63 = 4 · 19 + 7
19 = 2 · 7 + 5
7 = 1 · 5 + 2
5 = 2 · 2 + 1
2 = 2 · 1 + 0

the greatest common divisor of a3− 1 = 63 and 901 is 1. We go to the third
step. We compute

a4 ≡ 644 ≡ 596 (mod 901).

Since
901 = 1 · 595 + 306
595 = 1 · 306 + 289
306 = 1 · 289 + 17
289 = 17 · 17 + 0

the greatest common divisor of a4 − 1 = 595 and 901 is 17. This produces
a factorization

901 = 17 · 53.

In fact, since for p = 17 we can take B = 6, the algorithm would have
surely terminated in less then 6 steps. But why does the algorithm produces
a proper factor of 901? The answer has to do with the multiplicative group

(Z/53Z)×.

The order of this group is 52 = 53−1 = 4 ·13. In particular, by the theorem
of Lagrange, the possible orders of elements in this group are divisors of 52:

1, 2, 4, 13, 26 and 52.
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If, by luck, a is picked so that the order of a is divisible by 13 then, since 13
does not divide 6!,

a6! 6≡ 1 (mod 53).

This and

a6! ≡ 1 (mod 17)

imply that gcd(a6! − 1, 901) is precisely 17. This is exactly what happened
in our case since the order of 2 module 53 is dividible by 13.

This argument, of course, can be generalized provided that q − 1 - the
other factor of n - has a prime factor larger then B. We record, as a propo-
sition, what we have just discovered:

Proposition 46. Let n = p · q be a composite number. Let B be a
positive integer such that p− 1 divides B!. Assume that there exists a prime
factor P of q − 1 such that

P > B.

Let a be a positive integer whose order, as an element of the group (Z/qZ)×,
is divisible by P . Then the p−1 algorithm, started with this a, will compute
the prime factor p of n in at most B steps.

Of course, the success in factoring still depends on the choice of a. How-
ever, as we shall see in a moment, a random choice of a will almost certainly
be the right choice. Consider, first, our case q = 53. Then q − 1 = 4 · 13. If
the order of a randomly picked integer a modulo 53 is divisible by 13, then
the algorithm will produce the factor 17, certainly. Thus a bad choice of a
happens only if the order of a divides 4. This means that a is a fourth root
of 1. Since Z/53Z is a field, the number of fourth roots of 1 in less than or
equal to 4. Thus, the chance of picking a non-zero integer modulo 53 whose
order is not divisible by 13 is less than or equal to

4

52
=

1

13

which is very small. In general, let P be a (large) prime dividing q − 1 and
write q − 1 = mP e where P e is the maximal power of P dividing q − 1. If
the order d of a non-zero integer a modulo q is not divisible by P then d
divides m and a satisfies the congruence

am ≡ 1 (mod q).

This shows that a is an m-th root of 1. Since Z/qZ is a field, the number
of m-th rots of 1 is less then or equal to m. Thus the chance of picking a
non-zero integer modulo q whose order is not divisible by P - the algorithm
may fail only for such a - is less than or equal to

m

q − 1
=

1

P e
.
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Of course, if one choice of a fails to produce the prime p, we simply pick a
different a. The chance of not finding out the prime factor p with d different
choices of a is less then (

1

P e

)d
which quickly becomes very small, as d increases.

Exercises

1) Use the p− 1 method to factor
a) 9991.
b) 30227.

3. p+ 1 method

Again, our task it to factor a composite number n. The p + 1 method
is similar to the p − 1 method and it works well if p + 1 is composed of
small primes, as the name suggests. This method was introduced by H. C.
Williams in 1982. The main tool is the circle group

T (p)

of norm one elements in F×
p2

. This group has the order p+ 1. In a nutshell,

the role of the group (Z/pZ)× in the p − 1 method is played by the group
T (p) in the p+ 1 method.

Recall that the finite field Fp2 can be realized as follows. Pick an integer
d which is not a square modulo p. Then the finite field Fp2 can be realized
as the set of numbers

z = x+ y
√
d

where x and y are integers considered modulo p. In analogy with complex
numbers we shall call y the imaginary part of z and write

y = =(z).

Recall that the circle group T (p) is the subgroup of F×
p2

consisting of all

z such that
z · z̄ = (x+ y

√
d)(x− y

√
d) = 1.

The following lemma is the key. It allows us to formulate a user-friendly
version of the p+ 1 test, that is, a version that avoids an explicit use of the
group T (p).

Lemma 47. Let p be an odd prime. Let d be an integer which is not a
square modulo p. Let z = x+ y

√
d 6= 0 where x and y are two integers. Let

B be a positive integer such that p+ 1 divides B!. Then

=(zB!) ≡ 0 (mod p).
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Proof. Consider z as an element of the field Fp2 . Let

a =
z

z̄
.

Since

a · ā =
(z
z̄

)( z̄
z

)
= 1

a is contained in T (p). Since the order of T (p) is p + 1, and p + 1 divides
B!, the theorem of Lagrange implies that

aB! ≡ 1 (mod p).

Since a = z/z̄, after multiplying both sides of the congruence by z̄B!, we
obtain

zB! ≡ z̄B! (mod p).

This implies that the imaginary part of zB! is 0, as desired. The lemma is
proved. �

Assume now that we want to factor a composite integer n. The following
is a version of the p+ 1 test.

Pick a quadratic integer z = x + y
√
d. If zz̄ is not prime to n, then we

have found a factor of n. Otherwise, starting with z1 = z, use the recursion
formula

zi ≡ zii−1 (mod n)

to construct a sequence of numbers z2, z3, . . .. The algorithm stops for the
first i such that

D = gcd(=(zi), n) 6= 1.

There are two possible outcomes here. If D 6= n then we have found a factor
of n. If D = n then the algorithm fails and we need to restart with a different
z.

The algorithm, regardless of success or failure, will stop in finitely many
steps. Indeed, note that

zi ≡ zi! (mod n).

Now let p be a prime factor of n and B a positive integer such that p + 1
divides B! Then, as we showed in the lemma above,

=(zB) ≡ =(zB!) ≡ 0 (mod p).

This shows that p divides gcd(=(zB), n) and the algorithm stops in less than
B steps. Of course - if the algorithm is to be fast - the number B should be
small, which is possible only if p+ 1 is a product of small primes.

A small drawback of this algorithm comes from the fact that the con-
struction of the finite field Fp2 is based on the integer d which must not
be a square modulo p. Since, a priori, we do not know the factorization
n = pq, there is no way to know whether a randomly picked d is a square
modulo p. However, we have a good chance (50%) that it is. Thus, if one
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d does not work, we can try another. Take, for example, d = −1. Then
x + y

√
−1 = x + yi is a Gaussian integer. Recall that −1 is not a square

modulo p if p ≡ 3 (mod 4). In particular, we can use Gaussian integers in
the above algorithm to factor out primes p such that

(1) p ≡ 3 (mod 4).
(2) p+ 1 is a product of small primes.

Example: Let n = 667. We apply the p+1 method using d = −1 (Gaussian
integers) and z = 1 + 2i. The first step. We calculate

z2 ≡ (1 + 2i)2 ≡ −3 + 4i (mod 667).

Since
667 = 161 · 4 + 3
4 = 1 · 3 + 1
3 = 3 · 1 + 0

the greatest common divisor of 4 and 667 is 1. The second step. We calculate

z3 ≡ (−3 + 4i)3 ≡ 117 + 44i (mod 667).

Since
667 = 15 · 44 + 7
44 = 6 · 7 + 2
7 = 3 · 2 + 1
2 = 2 · 1 + 0

the greatest common divisor of 44 and 667 is 1. The third step. We calculate

z4 ≡ (117 + 44i)4 ≡ 5− 506i (mod 667).

Since
667 = 1 · 506 + 161
506 = 3 · 161 + 23
161 = 7 · 23 + 0

the greatest common divisor of 506 and 667 is 23. In particular, we have
obtained a factorization

667 = 23 · 29.

Note that the algorithm found the factor p = 23 ≡ 3 (mod 4) very
quickly. This is because

p+ 1 = 24 = 23 · 3
which divides 4!. In particular, the algorithm for n = 667 is guaranteed to
terminate in less than four steps for any initial value of z.

Exercises

1) Factor 5251 using the p+ 1 method. Use
a) z = 1 + 2i
b) z = 2 + i

1) Factor 3953 using the p+ 1 method. Use
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a) z = 1 + 2i
b) z = 2 + i

4. Quadratic sieve

Quadratic sieve is a modern factorization method. It is based on the
observation that for a composite number n we can have two positive integers
x and y such that

x2 ≡ y2 (mod n)

yet

x 6≡ ±y (mod n).

For example, 12 divides 102 − 42 = (10 + 4)(10 − 4), yet 12 does not di-
vide either of the two factors 10 + 4 = 14 and 10 − 4 = 6. In particular,
gcd(12, 14) = 2 and gcd(12, 6) = 6 are factors of 12. More generally, if we
have been lucky to find such x and y for n, then gcd(n, x+y) and gcd(n, x−y)
will be proper factors of n. Of course, the question is how to construct x
and y such that x2 ≡ y2 (mod n). This is what the quadratic sieve method
is about.

A variant of this method goes as follows. Let [
√
n] be the greatest

integer lees than or equal to
√
n. The algorithm makes use of the integers

xi = [
√
n] + i, i = 1, 2, . . . for (relatively) small values of i. For every such i,

the square xi is greater than n (but not much greater) and when we reduce
modulo n,

x2i ≡ yi (mod n),

then yi should not be too large. Of course, if yi is a square, then we have
succeeded. However, even if yi are not squares, it may still be possible to
factor n as it will be explained in a moment.

Consider, for example, n = 5917. Then [
√
n] = 76. We compute yi for

the first several xi. We tabulate the outcomes so that the maximal square
dividing yi is factored out:

772 ≡ 3 · 22 (mod 5917)
782 ≡ 167 (mod 5917)
792 ≡ 182 (mod 5917)
802 ≡ 3 · 7 · 23 (mod 5917)
812 ≡ 7 · 23 · 22 (mod 5917)
822 ≡ 3 · 269 (mod 5917)
832 ≡ 3 · 182 (mod 5917)

Note that the third congruence is 792 ≡ 182 (mod 5917). It follows that
5917 divides

792 − 182 = (79 + 18)(79− 18) = 97 · 61.
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Since gcd(5917, 97) = 97 and gcd(5917, 61) = 61 we have obtained a factor-
ization

5917 = 61 · 97.

However, there is another important point here. Even if we do not use the
congruence 792 ≡ 182 (mod 5917), we can still factor 5917. More precisely,
note that the factor 3 in the first and the last congruence is responsible that
y1 = 3 · 22 and y7 = 3 · 182 are not squares. Thus, if we multiply the first
and the last congruence, then

(77 · 83)2 ≡ (3 · 2 · 18)2 (mod 5917)

which gives, again, a congruence x2 ≡ y2 (mod n) with x = 77 · 83 = 6391
and y = 3 · 2 · 18 = 108. It follows that 5917 divides

(6391− 108)(6391 + 108) = 6283 · 6499.

Since 5917 is too big to divide either of the two factors we have definitely
succeeded in factoring 5917. Indeed, a short calculation using the Euclidean
algorithm yields

gcd(5917, 6283) = 61 and gcd(5917, 6499) = 97

and 5917 = 61 · 97.

Summarizing, even if none of the numbers yi is a square, they are by
construction relatively small, so there is a good chance that many of them
can be expressed as a product of a square and some small primes. Then some
of the congruences may be combined to get a difference of squares divisible
by n. This is exactly what happened in the above example. Indeed, if we
remove the two equations where relatively large primes 167 and 269 appear,
we are left with five congruences

772 ≡ 3 · 22 (mod 5917)
792 ≡ 182 (mod 5917)
802 ≡ 3 · 7 · 23 (mod 5917)
812 ≡ 7 · 23 · 22 (mod 5917)
832 ≡ 3 · 182 (mod 5917)

where only three primes 3, 7 and 23 are making up the square free part of
each yi. This fact, that there are more equations (five) than “obstructing”
primes (three), guarantees that the congruences can be combined so that
the product of corresponding yi is a square.

The process can be formalized, using a bit of linear algebra, as follows.
First of all, one picks a number B which depends on n and then we consider
congruences x2i ≡ yi (mod n) such that yi can be expressed, up to a square,
in terms of primes less than B. In practice there are recommendations what
B should be (perhaps NSA knows). Asume, for example, that we have
picked B = 40 for our n = 5917. This choice of B then eliminates the two
equations involving primes 167 and 269. The remaining congruences can be
tabulated as follows
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xi 3 7 23
77 1 0 0
79 0 0 0
80 1 1 1
81 0 1 1
83 1 0 0

This table is essentially a matrix, in this case a 5 × 3-matrix, with co-
efficients in the finite field Z/2Z. The rows are parameterized by xi and
columns by primes p less than B. The value of an entry, parameterized by
the pair (xi, p), is equal to the exponent of p as it appears in the square free
part of yi. Now, as soon as we have calculated enough yi so that the number
of columns is greater then the number of rows, we surely are going to have
some linear relations between rows. In our example, if the rows are denoted
by v1, v2, . . ., we have the following relation (congruence):

v1 + v5 ≡ (0, 0, 0) (mod 2).

Since the rows v1 and v5 correspond to x1 = 77 and x7 = 83, respectively,
this congruence implies that y1 · y7 is a square. We have used this already
to factor 5917. Note, however, that there is another relation:

v1 + v3 + v4 ≡ (0, 0, 0) (mod 2).

Since the rows v1, v3 and v4 correspond to x1 = 77, x4 = 80 and x5 =
81, respectively, it follows that y1 · y3 · y4 is a square and multiplying the
congrunces x2i ≡ yi (mod 5917) for i = 1, 3 and 4 gives:

(77 · 80 · 81)2 ≡ (3 · 7 · 23 · 4)2 (mod 5917).

Since 77 ·80 ·81 = 498960 and 3 ·7 ·23 ·4 = 1932, it follows that 5917 divides

(498960− 1932)(498960 + 1932) = 497028 · 500892.

This, unfortunately, does not give a factorization of 5917 since 5917 divides
the first factor and is relatively prime to the second. This example shows
that a dependence relation between the rows of the matrix does not neces-
sarily lead to a factorization of n.

Exercises

1) Factor 3837523 using

19642 ≡ 32 · 133 (mod 3837523)

and
142622 ≡ 52 · 72 · 13 (mod 3837523).

2) The quadratic sieve method finds quickly factors of the following three
numbers, without combining the congruences. Find the factors.

a) n = 10057
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b) n = 26123
c) n = 64777
d) n = 17557

3) Compute 2552 and 3172 modulo 64777. Combine these congruences to
factor 64777.

4) Use the quadratic sieve method to factor 7097.

5) The composite number n = 30227 with the encryption exponent e = 7 is
used to produce - using the RSA cypher - a secret message:

4110.

Use the quadratic sieve method to factor 30227. Use the factorization to
compute the decryption exponent d and to decipher the message. Express
the final answer using the replacement table:

A O H L M N K
2 3 4 5 6 7 8



CHAPTER 12

Elliptic curves

1. Cubic curves

In this chapter we shall study elliptic curves. The main interest in elliptic
curves lies in the fact that the set of points of an elliptic curve is a group!
For our purposes, an elliptic curve over a field F will be the set of solutions
of a cubic equation of the type

y2 = x3 + ax2 + bx+ c,

where a, b and c are in F .

Our first task is to get some understanding of elliptic curves by consid-
ering them over real numbers. In that case, the above equation cuts out a
honest curve in the x, y-plane, the shape of which can be understood using
calculus. Consider, for example the equation y2 = x3 +8. The following five
points on the curve are easily found:

x y

−2 0
1 3
1 −3
2 4
2 −4

The graph given below is obtained by first graphing the five points, and
then interpolating between these points. The interpolation - as given in the
picture - can be justified by the following:

(1) Since x3 + 8 = y2 ≥ 0, it follows that x3 ≥ −8 and x ≥ −2. Thus
the curve is situated right of x = −2. If x = −2 then y = 0 is
the only possible value for y. If x > −2 then we have two possible
values for y. We can say that the curve branches out of the point
P = (−2, 0) point. There is a a “positive” branch, consisting of
points with y > 0, and a “negative” branch consisting of points
with y < 0.

161
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P=(-2,0)

Q=(1,3)

R=(2,4)

(2) The implicit differentiation gives

dy

dx
=

3x2

2y
.

Note that dy
dx ≥ 0 if y > 0 and dy

dx ≤ 0 if y < 0. It follows that the
positive branch is increasing, while the negative branch is decreas-
ing. Each branch has a unique inflection point at x = 0.

(3) For large x, the curve is similar to y2 = x3.

The group law is based on the fact that any line - well, almost any -
intersects the curve y2 = x3 + ax2 + bx + c in 3 points. More precisely, let
P = (xP , yP ) and Q = (xQ, yQ) be two points on the curve y2 = x3 + bx+ c.
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The equation of the line through P and Q is

y =
yQ − yP
xQ − yP

(x− xP ) + yP = Ax+B.

The intersection points of the line and the elliptic curve are computed by
substituting y = Ax+B in the cubic equation, which gives

(Ax+B)2 = x3 + ax2 + bx+ c

and, simplified,

x3 + (a−A2)x2 + (b− 2A)x+ c+B2 = 0.

This is a cubic polynomial. As such, it has three roots. Two of the roots
are known - xP and xQ - the coordinates of P and Q. The third root xR is
the x-coordinate of the third point R = (xR, yR) of the intersection of the
cubic curve with the line. The number xR can be easily computed as follows.
Recall that the sum of zeros of a cubic polynomial x3 − αx2 + . . . is equal
to the coefficient α. In our case α = A2 − a, thus xP + xQ + xR = A2 − a
which gives

xR = −xP − xQ +A2 − a.
Finally, the coordinate yR of R is easily figured out since it is the (unique)
point on the line through P and Q with x-coordinate equal to xR. Thus,

yR = A(xR − xP ) + yP .

Take, for example, P = (−2, 0) and Q = (1, 3) on the curve y2 = x3 + 8.
The line through P and Q has the slope A = 1. Since a = 0, we have

xR = −(−2)− 1 + 12 = 2 and yR = 1(2− (−2)) + 0 = 4.

It follows that the line through P and Q intersects the curve y2 = x3 + 8 in
the third point R = (2, 4), as pictured.

This works fine except when the points P and Q have the same x-
coordinate, xP = xQ = C in which case the line through two points is
vertical, given by an equation x = C. When combined with the equation
y2 = x3 + ax2 + bx+ c we get a quadratic, not cubic, equation

y2 = C3 + aC2 + bC + c.

This quadratic equation has two solutions, the y-coordinates of P and Q. To
overcome this imperfection, mathematicians have added points “at infinity”
to the plane and build the so-called projective plane.

In order to explain the basic idea of projective geometry let’s take a step
back and consider a simpler problem of intersecting two lines in a plane. As
you well know, two different lines in the plane either intersect in a point
or are parallel. The projective plane is introduced precisely to overcome
this imperfection. The projective plane is obtained by adding points to the
usual plane, as follows. For every class of parallel lines in the plane you ad
a point “at infinity” where all these parallel lines intersect. This is not too
difficult to imagine. Indeed, if you stand in the middle of a long, straight
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road, two curbs of the road appear to meet in the distance. So you add that
point “at infinity” to the plane. You also identify this point with the point
where the curbs of the road “meet” as you turn about 180 degrees. (You do
this so that the two parallel lines, given by the two road curbs, intersect in
precisely one point.) Anyway, once you have added points at infinity, one
for each class of parallel lines, you have built the projective plane. In the
projective plane any two different lines intersect in precisely one point and,
not surprisingly, a line will intersect a cubic curve always in three points. For
example, the elliptic curve y2 = x3 + ax2 + bx+ c, when considered sitting
in the projective plane, consists of points in the usual plane (solutions of
y2 = x3 +ax2 + bx+ c) plus one point O at infinity, given as the intersection
of all vertical lines. With this modification, a vertical line drawn through
any two points of the cubic curve y2 = x3 + ax2 + bx + c will intersect the
cubic curve in O as well.

We are now ready to introduce a group law an a cubic y2 = x3 + ax2 +
bx+ c. The elements of the group are the points on the curve, including the
point O. The group operation - addition of points - is denoted by + and is
specified by the following axioms:

(1) The point at infinity O is the identity element (zero).
(2) If a line intersects the curve in three points P Q and R then,

P +Q+R = O.

(3) The inverse of a point P = (x, y) is −P = (x,−y) - only the y-
coordinate changes the sign.

For example, let P = (−2, 0) and Q = (1, 3) be the two points on the
curve y2 = x3+8. The sum P +Q is computed as follows. You draw the line
through P and Q. It intersects the cubic curve in the third point R = (2, 4),
as we have shown before. Then

P +Q = −R = (2,−4).

Our definition, however, contains a gap. If P = Q then there is no unique
line through P and Q. In this case we take the tangent line at P in order
to compute 2P . This can be explained as follows. Assume that P 6= Q. If
we move Q a little bit, then P +Q also moves a little bit. Thus, in order to
compute 2P , it is natural to take Q close to P and then P +Q approximates
2P . As we take Q closer and closer to P , the line through P and Q will look
more and more as the tangent line to the curve at P . Since the slope of the
tangent line at P is

lim
Q→P

yQ − yP
xQ − xP

=
dy

dx
(P ),

the x-coordinate of R = −2P is given by the doubling formula

xR = −2xP +

(
dy

dx
(P )

)2

− a.
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Note that dy/dx = ∞ can happen. This happens for P = (−2, 0) on the
curve y2 = x3 + 8. The tangent line at P is a vertical line x = −2 which
intersects the curve in P and in the point at infinity O. Thus, in this case,
2P = O and the point P has the order 2 in the group.

Of course, the formula for doubling is well defined only if the derivative
dy/dx exists. Geometrically, this simply means that it is possible to draw
the tangent line at every point of the cubic curve. If that is the case, the
set of all points together with the point at infinity O, forms a commutative
group. We state this as a fact without a proof. Otherwise, if there are some
points where the derivative dy/dx does not exist, then the curve is called
singular or degenerate. Degenerate curves are interesting in its own right
and will be discussed in details in the next lecture.

Exercises

1) Complete the addition table for the points P = (−1, 0), Q = (0, 1),
−Q = (0,−1), R = (2, 3), −R = (2,−3), and the point at infinity O on the
elliptic curve y2 = x3+1. (This shows that these six points form a subgroup
of the elliptic curve group.)

+ O P Q −Q R −R
O O P Q −Q R −R
P P O
Q Q O
−Q −Q O
R R O
−R −R O

2) Let P = (1, 3) be a point on the elliptic curve y2 = x3 + 8. Compute 2P ,
4P and 8P . (You should be able to compute 2P and 4P by hand. Some
software application might be needed for 8P .)

2. Degenerate curves

Doubling a point P on a cubic curve y2 = f(x) requires that the curve
has a tangent line at P or, equivalently, that the derivative dy/dx exist at
the point P . We allow dy/dx =∞, which happens when the tangent line is
vertical. Our task here is to identify points on the curve where dy/dx is not
well defined. To this end, implicit differentiation of y2 = f(x) gives

dy

dx
=
f ′(x)

2y
= ± f ′(x)

2
√
f(x)

.
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In particular, dy/dx exists unless the last fraction is equal to 0/0. This
happens if and only if x = α is a double (or a triple) root of the cubic
polynomial f(x). If that is the case, then the point

S = (α, 0)

on the curve y2 = f(x) is called a singular point and the curve is called a
degenerate or singular curve. One can easily determine if the curve y2 = f(x)
is singular as follows. Let x1, x2 and x3 be the three roots of f(x). Then
the discriminant of the polynomial f(x) is the number

∆ = [(x1 − x2)(x1 − x3)(x2 − x3)]2.

Usefulness of this number lies in the fact that it can be described in terms
of coefficients of the polynomial f(x) = x3 + ax2 + bx+ c:

∆ = a2b2 − 4a3c− 4b3 − 27c2 + 18abc.

In particular, given a cubic curve y2 = f(x) one can easily check whether
the curve is degenerate or not, by calculating the discriminant ∆. Singular
cubic curves are not considered to be elliptic curves. Still, the the addition
law - as defined by intersecting the cubic by lines - gives a group structure
on the cubic curve with the singular point S removed.

We are now ready to describe the degenerate curves over real numbers
in some detail. Let α be a double root of f(x). By translating x := x − α
we can assume, without loss of generality, that α = 0. In particular, the
equation of the curve is

y2 = x3 + dx2.

Solutions of this equation can be easily determined by substituting y = tx.
With this substitution the equation y2 = x3 + dx2 can be rewritten as

(d− t2)x2 = x3.

Now notice that the point S = (0, 0) is the only point on the curve with
x = 0. If x 6= 0 then we can divide both sides of (d− t2)x2 = x3 by x2. This
gives parametric equations{

x = t2 − d
y = tx = t3 − td.

Thus any point on the curve - except perhaps S - is given by a picking a
value for t and then calculating the coordinates x and y using these formulas.

Consider now the case when d = 0. As we shall verify in a moment
the group law here amounts simply to adding ratios x/y. That is, if P1 =
(x1, y1), P2 = (x2, y2), and P3 = (x3, y3) are three points on the intersection
of a line and the curve y2 = x3 then

x1
y1

+
x2
y2

+
x3
y3

= 0.
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In order to verify this we shall use the parameterization x = t2 and y = t3 of
the curve y2 = x3. Let t1 and t2 be non-zero numbers such that P1 = (t21, t

3
1)

and P2 = (t22, t
3
2). The line through the points P1 and P2 has the slope

A =
t31 − t32
t21 − t22

=
t21 + t1t2 + t22

t1 + t2
.

Now, a short calculation shows that the coordinates x3 and y3 of the third
point P3 on the intersection of the line and the curve are

x3 = −x1 − x2 +A2 =

(
t1t2
t1 + t2

)2

and

y3 = y1 +A(x3 − x1) = −
(

t1t2
t1 + t2

)3

.

Thus, the fraction x3/y3 is equal to

x3
y3

= − t1 + t2
t1t2

= − 1

t1
− 1

t2
= −x1

y1
− x2
y2

which is exactly what we wanted to prove. Note that, as t→∞, then

x

y
=

1

t
→ 0

so the point O “at infinity” naturally corresponds to the number 0. Thus,
the points on the cubic curve y2 = x3 together with the point O, but with the
singular point (0, 0) removed, form a group where adding points corresponds
to adding quotients x/y. In other words, the map

P = (x, y) 7→ x

y

gives an identification of two groups, the group of the cubic curve y2 = x3

and the group of real numbers with respect to the usual addition. Of course,
the curve y2 = x3 could be considered over any field F and the above
conclusions are valid again.

Now we shall study the degenerate curves where d 6= 0. If P = (x, y) is
point on the curve y2 = x3 + dx2 different form S, put

h(P ) =
y − x

√
d

y + x
√
d
,

and h(O) = 1. It turns out that the group law, in this case, amounts to
multiplication of numbers h(P ):

h(P +Q) = h(P ) · h(Q).

A verification of this is straightforward, yet somewhat tedious, so it is omit-
ted. A special case h(2P ) = h(P )2 is given as an exercise below. Note that
h(P ) is a real if d is positive and it is a complex number on the unit circle
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S=(0,0) P=(1,0)

  Figure 1

if d is negative. We shall illustrate the group structure by considering two
special cases d = −1 and d = 1.

Consider first d = −1. The curve y2 = x3 − x2 is pictured in Figure 1.
The singular point is S = (0, 0). It is isolated from the rest of the curve
and, clearly, there is no tangent line to the curve at the point S. The set
of points on the curve, including the point O but not the point S, forms a
group. Let i =

√
−1. Then the map

h(P ) =
y − ix
y + ix

identifies this group with T = {z ∈ C | |z| = 1}. the group of complex
numbers of norm 1. For example, consider the point Q = (2, 2) on the curve
y2 = x3 − x2. Let us compute P = 2Q. The slope of the tangent line at Q
is

A =
dy

dx
(Q) =

3x2 − 2x

2y
(Q) =

8

4
= 2.

It follows that

xP = −2xQ +A2 − a = −2(2) + 22 − (−1) = 1,
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P=(-1,0) S=(0,0)

  Figure 2

so P = (1, 0), as given in the Figure 1. The order if P is 2, hence Q is of
order 4. The map h, on the other hand, gives

h(Q) =
2− 2i

2 + 2i
= i

which is of order 4 as an element of the group T.

Consider now d = 1. The curve y2 = x3 + x2 is pictured in Figure 2.
This curve is self-intersecting at the singular point S = (0, 0). Again, the
set of points on the curve, together with the point O but with the point S
removed, is a group. This time the map

h(P ) =
y − x
y + x

identifies the group of points with the multiplicative group of non-zero real
numbers. Note that the expressions y − x and y + x define equations of the
two tangent lines at the point S:{

y − x = 0

y + x = 0
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These two lines do not intersect the cubic curve in any point different from
S. This explains why

h(P ) 6= 0,∞
for any point P 6= S on the curve. In particular, the map h is well defined.

Exercises

1) Let P = (1, 1) be a point on the degenerate cubic curve y2 = x3. Compute
nP for n = 1, 2, . . . , 5. What do you think nP should be? If nP = (xn, yn),
what is xn/yn?

2) Let P = (x, y) be a point on the degenerate curve y2 = x3 + dx2. Show
that 2P = (X,Y ) where

Y −X
√
d = (y − x

√
d)2 = (y2 − dx2)− 2xy

√
d.

3. Curves modulo p

In this section we study cubic curves modulo an odd prime p or, in other
words, congruences

y2 ≡ x3 + ax2 + bx+ c (mod p),

where a, b and c are integers. Consider, for example, the curve y2 = x3 + 8.
Then, as one easily verifies,

02 6≡ 83 + 8 (mod 11)

but

02 ≡ 83 + 8 (mod 13).

This shows that (8, 0) is a not a solution of y2 = x3 + 8 modulo 11 but it is
a solution modulo 13. The solution (8, 0) is also called a point modulo 13
on the cubic curve. Note that (1, 3) is an integral solution of y2 = x3 + 8
and it automatically gives a solution modulo p for any prime number p.

Points modulo p on a cubic curve can be added using the same group
law defined by intersecting the curve with lines. In particular, solutions of
the cubic equation modulo p, together with the point at infinity O, form a
finite group denoted by E(p). However, just as in the case of real curves, if

∆ ≡ 0 (mod p),

for the discriminant ∆ of the cubic curve E then the curve is degenerate
modulo p and singular points need to be removed before to have a group
structure. If p does not divide the discriminant, then we say that E has a
good reduction modulo p.

The discriminant of y2 = x3 + 8 is 27 · 82. This shows that we do not
need to worry about singular points for primes p 6= 2, 3. As the first example
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of computing on elliptic curves modulo a prime, we shall double the point
P = (1, 3) on y2 = x3 + 8 modulo p = 11. Recall that the coordinates of
−2P are given by

x−2P = −2xP +A2 and y−2P = yP +A(x−2P − xP )

where A is the slope of the tangent line at P . The slope is given by

A =
dy

dx
(P ) =

3x2

2y
(1, 3) =

3

6
.

Of course, in order to make sense of 3/6 modulo 11 we need to find the
multiplicative inverse of 6 modulo 11. Since 2·6−5·2 = 1, the multiplicative
inverse of 6 is 2, therefore A = 3 · 2 = 6. We can now easily calculate

x−2P = −2 · 1 + 62 ≡ 1 (mod 11)

and
y−2P = 3 + 6 · (1− 1) ≡ 3 (mod 11).

It follows that −2P = P or 3P = O. Thus, we have shown that the order
of P in E(11) is 3.

As the next example, we shall double the point P = (1, 3) modulo p = 13.
The slope of the tangent at P is given by

A =
dy

dx
(P ) =

3x2

2y
(1, 3) =

3

6
.

Again, in order to make sense of 3/6 modulo 13, we need to find the multi-
plicative inverse of 6 modulo 13. Since 11 · 6− 5 · 13 = 1, the multiplicative
inverse of 6 is 11, therefore A = 3 · 11 ≡ 7 (mod 13). We can now easily
calculate

x−2P = −2 · 1 + 72 ≡ 8 (mod 13)

and
y−2P = 3 + 7 · (8− 1) ≡ 0 (mod 13).

It follows that 2P = (8, 0). Doubling further the point 2P = Q gives

A =
dy

dx
(Q) =

3x2

2y
(8, 0) =

10

0

which shows that the tangent line at Q is “vertical”, and this means that
2Q = O, the identity point. Thus, we have shown that the order of P in
E(13) is 4.

The theory of solutions of a cubic equation modulo p is rather rich. As
an illustration we shall compute the number of solutions to y2 = x3 + 8
modulo 11 and modulo 13. Consider first p = 11. The first step is to
calculate f(x) = x3 + 8 modulo 11:

x 0 1 2 3 4 5 6 7 8 9 10
x3 0 1 8 5 9 4 7 2 6 3 10
f(x) 8 9 5 2 6 1 4 10 3 0 7
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Notice that f(x) takes all possible values modulo 11. If f(x) = 0 then
y = 0. If f(x) 6= 0 then f(x) is a square for 5 different values of x and it is
a non-square for 5 other values of x. Every time f(x) is a non-zero square
then there are two possible choices for y. Adding O, the point at infinity,
we have calculated that the order of E(11) is

|E(11)| = 1 + 2 · 5 + 1 = 12.

A rather different calculation emerges for p = 13. Indeed, calculating
f(x) = x3 + 8 modulo 13 gives:

x 0 1 2 3 4 5 6 7 8 9 10 11 12
x3 0 1 8 1 12 8 8 5 5 1 12 5 12
f(x) 8 9 3 9 7 3 3 0 0 9 7 0 7

In this case f(x) does not take all possible values modulo 13. However,
if f(x) = 0 then y = 0. This gives us 3 points on the curve modulo 13:

(7, 0), (8, 0) and (11, 0).

If f(x) 6= 0, in order to find other solutions of y2 = f(x), we list all squares
modulo 13:

1 ≡ (±1)2, 4 ≡ (±2)2, 9 ≡ (±3)2, 3 ≡ (±4)2, 12 ≡ (±5)2 and 10 ≡ (±6)2.

If f(x) is a non-zero square then there are two solutions for y. Since f(x) ≡ 3
(mod 13) for x = 2, 5 and 6, we have the following six points

(2, 4), (5, 4), (6, 4) and (2,−4), (5,−4), (6,−4).

Since f(x) ≡ 9 (mod 13) for x = 1, 3 and 9, the following additional six
points

(1, 3), (3, 3), (9, 3) and (1,−3), (3,−3), (9,−3).

In all, counting the the point O, we find that

|E(13)| = 3 + 6 + 6 + 1 = 16.

The computation of the order of E(11) can be easily generalized to the
curve y2 = x3 + c and any prime p ≡ 2 (mod 3). Note that the discriminant
of y2 = x3 + c is −27c2. In particular, the curve has a good reduction for
every odd prime not dividing 3c.

Proposition 48. Let c be a non-zero integer. Let E be the elliptic curve
given by the equation y2 = x3 + c. Assume that p is a prime such that it
does not divide c and such that p ≡ 2 (mod 3). Then

|E(p)| = p+ 1.

Proof. Let us look at the example of the curve y2 = x3 +8 and p = 11,
as worked out above. The key observation there is that the map x 7→ x3 is
one to one. We claim that the map x 7→ x3, from Fp to Fp, is one to one if
p ≡ 2 (mod 3). First of all, 0 7→ 0, so we need to show that the map x 7→ x3
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is one to one when restricted to the multiplicative group F×p . If x3 = y3

then (x/y)3 = 1. If p ≡ 2 (mod 3) then F×p has no elements of order 3. This

implies that x/y = 1 and x = y. It follows that x 7→ x3 is a one to one map,
as claimed.

Next, if x 7→ x3 is one to one, then so is x 7→ x3 + c. If x3 + c = 0 then
y = 0. This is one point on the curve. Next, x3 + c 6= 0 is a square for
(p− 1)/2 values of x. For every such x we have two choices for y. Counting
the point O, the order of E(p) is

|E(p)| = 1 + 2
(p− 1)

2
+ 1 = p+ 1,

as desired. �

Generally, if E is an elliptic curve, it is not easy to determine the order
of E(p). However, there is an estimate due to Hasse which says that, if we
write the order of E(p) as

|E(p)| = p− ap + 1

then

|ap| ≤ 2
√
p.

For example, if E is the curve y2 = x3 + 8, this estimate says that the order
of E(13) is between 7 and 21. The actual order is 16, as we calculated. There
are several families of elliptic curves for which it is possible to determine the
order of E(p) for all primes. One such family is y2 = x3 + c and the other
is y2 = x3 + bx. The family y2 = x3 + bx is the subject of the next section.

Exercises

1) Let P = (2, 3) be a point on the elliptic curve E := y2 = x3 − 10x + 21
modulo the prime 557.

(1) Show that 189P = O while 63P 6= O and 27P 6= O. Explain why
this shows that the order of P is 189.

(2) Use the fact that P has the order 189 and Hasse’s estimate to
determine - precisely - the order of E(557).

(The fastest way to compute mP is by consecutive squaring or doubling.)

2) Let P = (−1, 4) be a point on the curve y2 = x3 + 17. Then Q =
(21, 3) ≡ nP (mod 31) for some positive integer n. The number n is called
the discrete logarithm of Q with base P , modulo 31. Calculate n using the
giant step - baby step method. First, use Hasse’s inequality to show that
the order of E(31) is less then or equal to 43. Since the root of 43 is less
then 7, the number n can be written as n = i+ j7 for some i and j less then
7. Now n is determined by following two steps:

(1) Compute and list iP modulo 31 for all i = 1, 2, . . . 7.
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(2) Compute Q− j(7P ) for j = 1, 2, . . . until it is equal to iP for some
i, 1 ≤ i ≤ 6.

4. The curve y2 = x3 + bx

The family of elliptic curves y2 = x3 + bx is arguably one of the most
interesting. The discriminant of y2 = x3 + bx is −4b3. Thus y2 = x3 + bx
has a good reduction modulo an odd prime p as long as p does not divide
b. In this section we determine the order of E(p) for primes p ≡ 3 (mod 4).
The main tool is the observation that the function

f(x) = x3 + bx

is odd, that is, f(−x) = −f(x). Assume that f(x) 6= 0. If p ≡ 3 (mod 4)
then −1 is not a square. Thus, if f(x) is not a square then f(−x) = −f(x)
is a square. On the other hand, if f(x) is a square, then f(−x) = −f(x) is
not a square. It follows, if f(x) 6= 0, that f(x) is a square for precisely one of
the two elements {x,−x}. This plays a key role in the following proposition.

Proposition 49. Let b be a non-zero integer. Let E be the elliptic curve
given by the equation y2 = x3 + bx. Assume that p is a prime such that it
does not divide b and such that p ≡ 3 (mod 4). Then

|E(p)| = p+ 1.

Proof. We shall first count the points of order 2. They correspond to
the solutions of f(x) = 0. Since f(x) = x(x2 + b) we see that x = 0 is one
root of f(x). We have two different cases:

Case 1: −b is not a square modulo p. Then f(x) = 0 only for x = 0. In
particular, (0, 0) is the unique point of order 2. If x 6= 0 then f(x) 6= 0
and the equation y2 = f(x) has 2 or 0 solutions, depending whether f(x)
is a square or not. Furthermore, as we argued above, f(x) is a square for
precisely one of the two elements {x,−x}. Since we have (p − 1)/2 pairs
{x,−x} in all, and each pair contributes two points in E(p), we can conclude
that

|E(p)| = 2 + 2 · p− 1

2
= p+ 1

where the first summand 2 accounts for (0, 0) and the identity O.

Case 2: −b is a square modulo p. Let −b = s2. In this case f(x) = 0 for
three values x = 0, s and −s. If f(x) 6= 0 then, arguing in the same way
as above, the pair {x,−x} contributes two points on E(p). Since the pair
{s,−s} also contributes two points on E(p) (the points (0,−s) and (0,−s))
the total number of points is again p+ 1. �

It is possible to determine the order of E(p) for the curve y2 = x3 + bx
even for p ≡ 1 (mod 4). The order of E(p) is, quite remarkably, related to
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expressing the prime p as a sum of two squares. Assume, for simplicity, that
b = 1. Recall that an odd prime can be written as a sum of two squares

p = α2 + β2

if and only if p ≡ 1 (mod 4). Since p is odd, the numbers α and β must
have different parity. Without any loss, we can assume that α is odd. Then
the number of points on the curve y2 = x3 + x modulo p is

|E(p)| = p± 2α+ 1

where the sign in front of 2α is negative if α ≡ 1 (mod 4), and positive if
α ≡ 3 (mod 4). As an example, consider p = 173. Since 173 = 132 + 22 and
13 ≡ 1 (mod 4) the number of points modulo 173 is

|E(173)| = 173− 2 · 13 + 1 = 148.

It is interesting to note that this number is on the lower end of the Hasse
estimate for p = 173:

148 ≤ |E(173)| ≤ 200.

The doubling formula takes an interesting shape for the curve y2 =
x3 + bx. Recall that

x−2P = −2xP +
(3x2P + b)2

4y2P
.

A simple calculation, using 4y2P as a common denominator, shows that the
right hand side can be rewritten as a pure square:

x−2P =
(x2P − b)2

4y2P
.

In particular, if R = 2P , then xR is a square. This observation can be used
to show that a point on the curve y2 = x3 − bx is not obtained by doubling
another point. Consider, for example, the point R = (3, 3) on the curve
y2 = x3 − 6x. Then, by the quadratic reciprocity, 3 is not a square modulo
31 and, therefore, the point R is not a double of another point on the curve
modulo 31.

Exercises

1) Let Fn = 22
n

+ 1 be a Fermat prime. Show that the number of points on
the curve y2 = x3 + x modulo Fn is 22

n
.

2) Show that the point R = (−2, 4) on the curve y2 = x3 − 12x is not
obtained by doubling another point modulo 31.





CHAPTER 13

Factoring and testing using elliptic curves

1. Lenstra’s factoring method

Factoring integers using elliptic curves was introduced by Lenstra in
1987. This method can be viewed as a vast generalization of p− 1 and p+ 1
methods. In order to explain the idea, consider the point P = (1, 3) on the
elliptic curve y2 = x3 + 8. Working modulo n = 533, we shall compute

2P, 4P, 8P, . . .

To that end, recall that the formulas for doubling a point P = (xP , yP ) are

x−2P = −2xP +A2

and
y−2P = yP +A(x−2P − xP ),

where A is the slope of the tangent line at the point P . We apply this to
P = (1, 3). The slope of the tangent line at the point P is

A =
dy

dx
(P ) =

3x2

2y
(1, 3) =

3

6
.

Of course, in order to make sense of the fraction 3/6 modulo 533 we need to
invert 6 modulo 533. As usual, this is done using the Euclidean algorithm,
applied to 533 and 6:

533 = 88 · 6 + 5
6 = 1 · 5 + 1
5 = 5 · 1 + 0

The first equation can be solved for 5 and then 5 can be eliminated from
the second equation to obtain

89 · 6− 533 = 1.

Thus the inverse of 6 modulo 533 is 89 so A = 3 · 89 = 267. It follows that

x−2P = −2 · 1 + 2672 ≡ 398 (mod 533)

and
y−2P = 3 + 267 · 397 ≡ 468 (mod 533).

So we get that

2P = (398,−468) ≡ (398, 65) (mod 533).

177
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The next step is to calculate 4P = 2(2P ). The slope of the tangent line
at 2P = (398, 65) is

A =
dy

dx
(2P ) =

3x2

2y
(398, 65) =

3 · 3982

130
.

This time we need to invert 130 modulo 533. The Euclidean algorithm gives:

533 = 4 · 130 + 13
130 = 10 · 13

We cannot invert 130 modulo 533, since the Euclidean algorithm has com-
puted 13 as a non-trivial greatest common divisor of 130 and 533. But that
is not bad, since we have found that 13 is a non-trivial factor of 533. In
particular, we have factored

533 = 13 · 41.

So what happened here? Recall that we have shown, in Section 3 of
Chapter 12, that |E(13)| = 16. Since 16 = 24, consecutive doubling of any
point modulo 13 has to give, eventually, the identity element O. In fact,
we showed that the order of P = (1, 3) modulo 13 is 4. Thus, the tangent
line at 2P modulo 13 is ∞, meaning that the numerator of A = 3x2/2y,
evaluated at the point 2P , must be divisible by 13. When we attempted
to invert the the numerator modulo 533 we could not do it and found the
factor 13 instead.

There is a bit more to say here. Similar to what can happen with
Pollard’s p − 1 test, the numerator could have been divisible by the whole
533 and we would not have discovered a proper factor of 533. But this could
only happen if the order of P is 4 modulo 41, too. Since 41 ≡ 2 (mod 3)
the order of the the elliptic curve y2 = x3 + 8 modulo 41 is

|E(41)| = 41 + 1 = 42,

by Section 3 of Chapter 12. Since 4 does not divide 42 there is no point
on E(41) of order 4. This explains why consecutive doubling of the point
P = (1, 3) on the curve y2 = x3 + 8 modulo 533 finds a non-trivial factor of
533.

We note that the group E(41) is isomorphic to the group Z/42Z. (See
the first exercise below.) The group Z/42Z has only one element of order 2
and no elements of order 4. It follows that the order of a randomly picked
point on E(41) is very likely (with probability 40/42) not a power of 2. On
the other hand, the order of any point in E(13) is a power of 2. This shows
that consecutive doubling of any point on the curve y2 = x3 + 8 modulo 533
would very likely yield a factorization of 533.

Of course, we do not need restrict ourselves to doubling points. We can
use the above idea to factor a number n = pq if we can find a a point P on
an elliptic curve E such that P has small order modulo p and large order
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modulo q. Here is a more general approach modeled after Pollard’s p − 1
test:

Pick an Elliptic curve E and a point P on it. Compute P2 = 2P , P3 =
3P2 . . . modulo n as long as you can.

Here is what is going on here: Assume that p is a prime factor of n.
The order of P modulo p is finite, so there exists an integer B such that the
order of P modulo p divides B!. Then

PB = B! · P

must be the identity element O on the curve E(p). Put Q = (B − 1)! · P .
The identity B ·Q = O in the group E(p) can be written as

(B − 1)Q ≡ −Q (mod p).

Thus, as you attempt to add Q = (x1, y1) and (B − 1)Q = (x2, y2) modulo
n, you have to compute the slope of the line through this two points. This
involves inverting x2−x1 modulo n. However, since (B−1)Q is congruent to
−Q modulo p, x2−x1 is divisible by p and the Euclidean algorithm produces
a non-trivial common divisor of n and x2 − x1. If that divisor is equal to n,
then the algorithm has failed, and we need to restart with a new point P or
a new curve E. Of course, the number B has to be small if the algorithm is
to run efficiently. This can happen only if the order of the curve E modulo
p

|E(p)| = p− ap + 1

is a product of small primes. If, with some luck, we have picked an elliptic
curve such that p − ap + 1 is divisible by small primes only, then we have
a good chance to factor n = pq. Since ap can take all kinds of values, the
elliptic curve tests appear to have a considerable advantage over p − 1 and
p+ 1 methods.

As an example, we shall factor n = 2501 using the point P = (1, 1) on
the curve y2 = x3 − 2x+ 2. We calculate 2P first. The slope of the tangent
line at P is

A =
dy

dx
=

3x2 − 2

2y
(P ) =

1

2
≡ 1251 (mod 2501)

since the multiplicative inverse of 2 modulo 2501 is 1251. Now one quickly
computes that

x−2P = −2 · 1 + 12512 ≡ 1874 (mod 2501)

and

y−2P = 1 + 1251 · 1873 ≡ 2188 (mod 2501).

So we get that

Q = 2P = (1874,−2188) ≡ (1874, 313).
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The next step is to compute 3Q = Q+ 2Q. The slope of the tangent at Q is

A =
dy

dx
=

3x2 − 2

2y
(Q) =

10535626

626
= 1414 · 835 = 218 (mod 2501).

since 10535626 ≡ 1414 and the inverse of 626 is 835. From this we compute
that

2Q = (1259, 1297).

Now we can add Q+ 2Q. In order to compute the slope through Q and 2Q
we need to invert

x2Q − xQ = 1259− 1874 ≡ 1886 (mod 2501).

This is done using the Euclidean algorithm:

2501 = 1 · 1886 + 615
1886 = 3 · 615 + 41
615 = 15 · 41 + 0

This shows that gcd(1886, 2501) = 41. In particular we have found a fac-
torization

2501 = 41 · 61.

Since adding points on an elliptic curve is hard work, one may wonder
if this approach to factoring has any merits. In order to get a better un-
derstanding of the efficiency of the test, assume that we want to factor a 60
digit composite number n = pq where the prime factors p and q have around
30 digits each. The sieve method would require about

1030 = 1, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000

steps. On the other hand, if there is an elliptic curve E such that

|E(p)| = p− ap + 1 = 2m

then the elliptic curve test could factor n by doubling a point on E in less
then m steps. By Hasse’s estimate, the number of digits of E(p) is the same
as the number of digits of p (add or take one), which is 30. It follows that

m = log2(|E(p)|) ≈ log2(p) ≈ log2(1030) ≈ 100.

Thus, the number of doublings is less than 100. Each doubling requires
inverting of an integer modulo n. This is done using the Euclidean algorithm
and it takes less then 5 times the number of digits of n. In all, about
100× 300 = 30, 000 numerical operations might be expected and this is, by
a huge factor, less than 1030.

Exercises

1) Compute the order of P = (1, 3) on y2 = x3 + 8 modulo 41. Helpful hint:
The order of the the group E(41) is 42.
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2) Let E be the elliptic curve y2 = x3 + 17. The prime factors p < q of the
composite number 7519 = pq satisfy property

|E(p)| = 64 = 26 and |E(q)| = 111 = 3 · 37.

Therefore, the order of any point P is a power of 2 modulo p and it is odd
modulo q. In particular, doubling any point P 6= O quickly gives the identity
element modulo p, but nod modulo q. Double the point P , as many times
as necessary, to factor 7519 where

a) P = (−1, 4)
b) P = (2, 5).

3) Let E be the elliptic curve y2 = x3 + 15. Try to factor 7519 by consecu-
tively doubling P = (1, 4). What happens?

4) Factor 6077 using the point P = (2, 5) on the curve y2 = x3 + 17. That
is, compute P2 = 2P , then P3 = 3P2 etc...

5) Reverse engineering. In this exercise we shall construct a composite
number n = p · q which can be factored using the point P = (1, 2) be on the
curve y2 = x3 − x + 4. First, calculate Q = 2P as a rational point. Next,
calculate 2Q. In order to calculate 3Q - do not do that - you need the slope
through Q and 2Q:

A =
y2Q − yQ
x2Q − xQ

.

Write x2Q − xQ as a reduced fraction and let p be the biggest prime divisor
of the numerator. Let q be the first prime number bigger then 2p. This
choice of q is not important, but it assures that the following number

n = pq

is well defined. Now use the point P = (1, 2) on the curve y2 = x3 − x + 4
to factor n.

2. Degenerate curves modulo p

The factorization attack via cubic curves can be applied to degenerate
curves, as well. Since degenerate curves are somewhat special and different
from non-degenerate (i.e. elliptic) curves, it may be interesting to investigate
them in more details. Recall that a curve y2 = f(x) is degenerate if f(x)
has a double root. By shifting the x-coordinate, if necessary, we can assume
that the double root is 0, so the equation takes form

y2 = x3 + dx2.

Consider first the case when d = 0. This is the case when f(x) has a
triple root. The equation is y2 = x3. Recall that the group law amounts to
adding the fraction x/y. Thus, given a point P = (x, y) on y2 = x3 and an
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integer m, then

mP =
( x

m2
,
y

m3

)
.

Indeed, if we put x′ = x/m2 and y′ = y/m3, then

x′

y′
= m · x

y
,

as required.

Now recall that factoring a composite number n using a point P on the
curve y2 = x3 requires computing

P2 = 2P, P3 = 3P2, P4 = 4P3 . . .

modulo n. This amounts to dividing coordinates of P, P2, P3 . . . by (powers
of) 2, 3, 4 . . ., modulo n. We can do that as long as 2, 3, 4 . . . are relatively
prime to n. Note that this algorithm stops once we have arrived at the small-
est prime p dividing n. In essence, our algorithm is the oldest factorization
method, the sieve of Eratosthenes.

The situation is more exciting if d is non-zero modulo p. We can easily
find all solutions of the equation y2 = x3 + dx2, as follows. If x = 0 then
y = 0, and we have the singular point S = (0, 0) on the curve. If P = (x, y)
is any other point on the curve, then x 6= 0 so t = y/x is well defined.
Substitute y = tx in the cubic equation. This gives

x2t2 = x3 + dx2

which implies that x = t2− d. Since y = xt we see that the point P is given
by

P = (t2 − d, t3 − td).

However, if d is a square, d = u2, then P = S for t = ±u. If d is not a
square, then P 6= S for any t. Thus, the number of solutions of y2 = x3+dx2

(including S) is p − 1 if d is a square, and p + 1 if d is not a square. The
group Ens(p) is formed by excluding S and including the point at infinity
O. Thus the order of the group Ens(p) is

|Ens(p)| =

{
p− 1 if d is a square, and

p+ 1 if d is not a square.

Without verification, we state here that the group law on Ens(p) amounts
to multiplying numbers

h(P ) =
y − x

√
d

y + x
√
d
,

where P = (x, y) is a point on E. (We also set h(P ) = 1.) If d is a
square modulo p then the above fraction is understood as an element of F×p .
Otherwise, it is an element of the quadratic extension Fp2 . Moreover, in this
case, h(P ) lands in the circle group

T (p) = {z = a+ b
√
d ∈ F×

p2
| zz̄ = 1},
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where z̄ = a− b
√
d. Indeed, h(P ) = z/z̄, where z = y − x

√
d, so

h(P ) · h(P ) =
z

z̄
· z̄
z

= 1.

We recall that T (p) is a subgroup of F×
p2

analogous to the (unit) circle

subgroup T of C×. The order of T (p) is p+ 1.

Summarizing, the map h is a homomorphism from Ens(p) to F×p or T (p)
depending on whether d is a square or not, respectively.

Proposition 50. The map h is one to one and onto. In other words,
the map h is an isomorphism of groups.

Proof. In order to verify this statement we need to show that the map
h is one to one. Let P = (x, y) such that h(P ) = 1:

h(P ) =
y − x

√
d

y + x
√
d

= 1.

This identity can be rewritten as

y − x
√
d = y + x

√
d

and 2x
√
d = 0. It follows that x = 0. If x = 0, then y2 = x3 + dx2 = 0

and y = 0, as well. This means that P = S. But P cannot be equal to
S since S is excluded from the group. Thus we have shown that h(P ) = 1
only for P = O. Now we can easily show that h is one to one. Indeed, if
h(P1) = h(P2) then, since h is a homomorphism,

h(P1 − P2) = 1

which means that P1 − P2 = O or P1 = P2. Finally, the map has to be
onto since it is a map between two finite sets with the same number of
elements. �

The factorization method based on the curve y2 = x3+dx2 is, essentially,
the p − 1 method or p + 1 method depending whether d is a square or
not modulo p, respectively. The first of this two cases is quite believable,
especially if we show the second, which we intend to do here. To that end
assume, for simplicity, that p ≡ 3 (mod 4). Then we can chose d = −1. The
field Fp2 can be realized as Gaussian integers modulo p. The factorization of

a composite number n = pq using the curve y2 = x3− x2 consists of picking
an integer point P = (a, b) and then calculating Pi = i! · P for i = 2, 3, . . .
modulo n. Via the isomorphism h this amounts to calculating(z

z̄

)i!
where z = b − ia and the quotient is understood in terms of Gaussian
integers modulo n. The algorithm terminates when PB = O in Ens(p),
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which happens relatively quickly if p + 1 is a product of small primes. Via
the homomorphism h the identity PB = O is equivalent to(z

z̄

)B!
≡ 1 (mod p)

or, after multiplying both sides of the congruence by z̄B!,

zB! ≡ z̄B! (mod p).

But this means that imaginary part of zB! is trivial:

=(zB!) ≡ 0 (mod p).

This congruence is precisely what terminates the p+ 1 algorithm with z as
the initial input. Summarizing, the factorization attack involving the cubic
curve y2 = x3 − x2 and a point P = (a, b) is the same as the p+ 1 method
starting with z = b− ai.

Through our emphasis on groups, we have seen that Lenstra’s elliptic
curve method is a natural generalization of Pollard’s p−1 method. Although,
superficially, Pollard’s p − 1 method and Lenstra’s elliptic curve method
appear different, in essence, they are quite similar. It is only the underlying
group that is different. The following table summarizes which group is used
in the four factorization methods.

Method: Sieve p− 1 p+ 1 Lenstra
Group: Z/pZ F×p T (p) E(p)

3. Elliptic curve test for Mersenne primes

Recall that a Mersenne number is a number M` = 2` − 1 where where `
is an odd prime. The Lucas-Lehmer test for primality of M` makes use of
the circle group T (p). This group has the order p + 1. In particular, if M`

is a prime, then T (M`) is a cyclic group of order 2`. This observation is a
crucial ingredient in the proof of the test.

Dick Gross has recently introduced an elliptic curve version of the Lucas-
Lehmer test for Mersenne primes. In essence, Gross replaces the group T (p)
with the group E(p) where E is a carefully chosen elliptic curve. Consider
the elliptic curve E given by y2 = x3 − 6x. The curve E has two obvious
integer points: {

Q = (0, 0)

P = (3, 3).

Note that Q is a point of order 2 on E. The discriminant of E is ∆(E) =
2533. In particular, E has a good reduction for all primes p > 3. The points
P and Q can be considered as elements of the finite group E(p) of points
modulo p on the elliptic curve E. Recall that the order of E(p) is p+ 1 for
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every prime p ≡ 3 (mod 4) and p 6= 3. In particular, if M` is prime then
the order of E(M`) is

|E(M`)| = M` + 1 = 2`.

Moreover, as we shall see in a moment, the group E(M`) is also cyclic. These
two observations are key ingredients in the test.

Proposition 51. Let P = (3, 3) and Q = (0, 0) be points on the elliptic
curve y2 = x3 − 6x. Let ` be an odd prime. The number M` = 2` − 1 is
prime if and only if the congruence

2`−1P ≡ Q (mod M`)

holds for the curve y2 = x3 − 6x.

Proof. Assume that the congruence holds. We want to show that M` is
prime. Let p be a prime factor of M`. We can pick p ≡ 3 (mod 4). Indeed,
if all prime factors of M` are congruent to 1 modulo 4 then their product
is also congruent to 1 modulo 4. But M` is congruent to 3 modulo 4 and
this is a contradiction. Next, note that p is not 3. Indeed, since 2 ≡ −1
(mod 3), we have

M` = 2` − 1 ≡ (−1)` − 1 ≡ −2 ≡ 1 (mod 3).

Since the curve E has a good reduction modulo any prime p > 3, the
congruence 2`−1P ≡ Q (mod M`) implies

2`−1P ≡ Q (mod p)

for any prime p dividing M`. Since doubling Q gives O, the identity element
in E(p), we have {

2`−1P 6≡ O (mod p)

2`P ≡ O (mod p).

This shows that the order of P in E(p) is exactly 2` = M` + 1. (See the
proof of the Lucas-Lehmer test for a detailed explanation why the order is
2`.) On the other hand, since we have picked p ≡ 3 (mod 4),

|E(p)| = p+ 1.

Since the order of P is less then or equal to the order of the group E(p) it
follows that M` + 1 ≤ p+ 1 and M` ≤ p. This implies that M` = p.

To prove the other direction, assume that M` is prime. If we can show
that

(1) E(M`) is a cyclic group of order 2`

(2) P is an element of order 2` in E(M`)

then we are done. Indeed, (2) implies that 2`−1P has order 2. Since a cyclic
group of order 2` has only one element of order 2 and the point Q = (0, 0)
is an element of E(M`) of order 2, it follows that

2`−1P ≡ Q (mod M`).
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as desired. It remains to show (1) and (2) above. First of all, since M` ≡ 3
(mod 4) the order of E(M`) is M` + 1 = 2`. To show that E(M`) is cyclic
we need the following simple lemma.

Lemma 52. Let G be a commutative group of order 2`. Assume that G
has only one element z of order 2. Then G is cyclic.

Proof. Let G2 be the set of squares of of all elements of G, let G4 be
the set of 4-th powers of all elements of G and so on. In this way we get a
sequence of subgroups

G ⊇ G2 ⊇ G4 ⊇ . . .
in G. If G is not cyclic then the order of any element in G divides 2`−1.

Then g2
`−1

= 1 for every element g in G. Then G2`−1
is the trivial subgroup

of G. Thus, in order to show that G is cyclic it suffices to show that G2`−1
is

not trivial. We will accomplish this as follows: We will show that the order
of G2 is half the order of G, the order of G4 is half the order of G2 and so

on. In the end this shows that the order of G2`−1
is 2. In particular, G2`−1

is not trivial.
Consider the map x 7→ x2 from G onto G2. If x2 = y2 then (xy−1)2 = 1.

This implies that x = y or x = yz. It follows that squaring is a 2 to 1 map
and, therefore, the order of G2 is 2`−1. Since G2 surely contains an element
of order 2, it must contain z as it is a unique element of order 2 in G. The
same argument now shows that the order of G4 is 2`−2. Continuing in this

fashion it follows that the order of G2`−1
is 2. The lemma is proved. �

Now let’s go back to the curve E(M`). We already know that the order
of E(M`) is 2`. In order to show that E(M`) is cyclic, by lemma, we need
to show that Q = (0, 0) is the only element of order 2 in E(M`). Recall that
elements of order 2 correspond to the roots of x3 − 6x = x(x2 − 6). The
quadratic reciprocity implies that 2 is a square modulo M` and 3 is not a
square modulo M`. It follows that 6 is not a square modulo M` and 0 is the
unique root of x3 − 6x modulo M`. This shows that E(M`) is cyclic.

It remains to show that P = (3, 3) has the order 2` in E(M`). We need
another simple result for cyclic groups of order 2`:

Lemma 53. Let G be a cyclic group of order 2`. Then elements of order
2` in G are precisely non-squares.

Proof. This can be easily seen by writing down G as the group Z/2`Z =
{0, 1, . . . 2`−1}. The group operation is the modular addition. In particular,
to square a number means to multiply the number by 2. It follows that even
numbers 0, 2, . . . , 2` − 2 are squares while odd numbers 1, 3, . . . , 2` − 1 are
non-squares. The order of any odd number is clearly 2`. �

If we can show that P is not obtained by doubling a point on the curve
modulo m then the order of P = (3, 3) in E(M`) is 2`, by the lemma. If
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(3, 3) ≡ 2R (mod M`) for some R = (xR, yR) in E(M`) then the doubling
formula (worked out in Chapter ?? Section 4) shows that

3 ≡ (xR + 6)2

4y2R
(mod M`).

This is impossible since 3 is not a square modulo M`. Therefore the order
of P in E(M`) is 2`, as desired. The proof of the test is now complete.

�

As an example, consider 31 = 25 − 1. A calculation modulo 31 shows
that

2P ≡ (14, 5) (mod 31)
4P ≡ (23, 10) (mod 31)
8P ≡ (16, 21) (mod 31)
16P ≡ (0, 0) (mod 31)

confirming that 31 is indeed a prime number.

The original test, as developed by Dick Gross, uses the curve y2 =
x3 − 12x and points P = (−2, 4) and Q = (0, 0). The test works the same:
a Mersenne number M` = 2` − 1 is prime if and only if

2`−1 ≡ Q (mod M`)

on E. The proof is completely analogous to the proof for the curve y2 =
x3 − 6x. The main ingredients are given in the following exercises.

Exercises

1) Let E be the elliptic curve y2 = x3−12x. Then P = (−2, 4) andQ = (0, 0)
are two points on E. Let ` be an odd prime such that M` = 2`− 1 is prime.
Show that

(1) Q is the only point of order 2 in E(M`).
(2) P is not obtained by doubling any point on E(M`).

2) The previous problem shows that the curve y2 = x3−12x can also be used
to test primality of Mersenne numbers. Use the test to show that 31 = 25−1
is prime.


