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Introduction

Serre has asked if there are motives M with motivic Galois group of type G2 [Se3; pg
386]. This paper is the first step in a project to construct such a motive M , of rank 7 and
weight 0, over the base field Q.

Let G be the anisotropic form of G2 over Q, and let π = ⊗̂vπv be an automorphic
representation of the adelic group G(A). At almost all primes p, the local representation
πp is unramified and has Satake parameter sp, a semi-simple conjugacy class in the dual

group Ĝ(C) = G2(C). Let V̂ be the irreducible 7-dimensional representation of Ĝ(C). The

unramified representation πp is determined by the characteristic polynomial of sp on V̂:

L(πp, V̂, X) = det(1 − spX |V̂)−1.

By giving a rational structure on the space of modular forms for G, we show that the
coefficients of all the polynomials det(1− spX |V̂) lie in a totally real number field E ⊂ C.
Under the additional hypothesis that at least one local component of π is the Steinberg
representation, we conjecture the existence of a motive M = M(π) of weight 0 over Q with
coefficients in E, whose local L-function at unramified primes p is given by the formula

Lp(M, s) = L(πp, V̂, p
−s).
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2 B. H. GROSS AND G. SAVIN

The first step in our construction of M is to lift π to an automorphic, cuspidal represen-
tation π′ of the split group G′ = PGSp6. Such a lifting, at least at the level of L-packets
is predicted by Langlands functoriality. Indeed, we have an inclusion of dual groups

Ĝ(C) = G2(C) →֒ Spin7(C) = Ĝ′(C)

which realizes G2 as the stabilizer of a non-isotropic vector in the 8-dimensional spin
representation of Spin7. We are able to construct a lifting π → π′ with the property
predicted by the functoriality in many cases, using an exceptional theta-correspondence.
The group G × G′ appears as a dual pair in the adjoint group H of type E7 and rank 3
over Q.

The bulk of this paper is devoted to a study of the theta-correspondence which results
from the restriction of the minimal representation of H to the subgroup G×G′. The local
results were suggested by the work of Huang, Pandžić, and Savin [HPS] on the quaternionic
form of E7 of rank 4 over R. The global results on cuspidality and non-vanishing were
inspired by the work of Ginzburg, Rallis, and Soudry [GRS2] in the split case.

The second step in our construction of M is to use the lifted representation π′ of G′

to define a motive M ′ in the cohomology of a Siegel modular variety. Specifically, assume
that there is a finite, non-empty set S of primes such that πp is unramified for all p /∈ S,
and πp is the Steinberg representation for all p ∈ S. Let X be the 6-dimensional Siegel
modular variety over Q, classifying principally polarized abelian varieties of dimension
3 with an Iwahori level structure at all p ∈ S. If π∞ has highest weight k1ω1 + k2ω2,
where ω1 is the weight of the 7-dimensional representation and ω2 is the weight of the 14-
dimensional adjoint representation, let F be the local system on X corresponding to the
rational representation ofG′ with highest weight k2ω1+k1ω2+k2ω3 = (k1+2k2, k1+k2, k2).
Then the π′

f -isotypic component M ′ ⊆ H6
c (X,F)(3) should have rank 8 and coefficients

in E. As π′ is lifted from G, M ′ should decompose as the sum of M and a Hodge class,
arising from Hilbert modular 3-folds in X . Several difficulties remain in proving this, but
we hope to treat these geometric questions in a future paper.

I Spaces of modular forms

In this chapter we develop the arithmetic theory of modular forms for semi-simple groups
over Q with G(R) compact. At the end of this chapter we specialize to the case when G is
of type G2. In particular, we construct two interesting modular forms for the anisotropic
form of G2. It will be shown in Chapter V, that they lift non-trivially to G′ = PGSp6.

1. Groups.

Let G be a semi-simple algebraic group over Q with G(R) compact. To simplify some
of the exposition, we will further assume that G is simply connected, and is an inner form
of a split group over Q. Then G is split over Qp for almost all primes p, and −1 is an
element of the Weyl group of G. Also, the center Z(G) is killed by 2.

Let W be an irreducible algebraic representation of G over Q, which is absolutely
irreducible (i.e. remains irreducible over Q̄). Then W is orthogonal, and the G-invariant
symmetric bilinear form on W is definite over R. We fix a G-invariant, positive-definite
inner product

(1.1) <,>: W ×W → Q,
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which is unique up to scaling by Q+.

2. Modular forms.

Let Q̂ = Q ⊗ Ẑ be the ring of finite adèles of Q, so A = R × Q̂ is the ring of adèles. Let
K be an open compact subgroup of the locally compact group G(Q̂). Since G(Q)\G(Q̂) is
compact ([B2]), the double coset space

(2.1) G(Q)\G(Q̂)/K

is finite. Let {gα} represent the distinct double cosets, and for each α, define the finite
group

(2.2)
Γα = G(Q) ∩ gαKg

−1
α

= {γ ∈ G(Q) | γgαK = gαK}.

Associated to K ⊂ G(Q̂) and an irreducible representation W of G over Q, we have a
rational vector space

(2.3)
A = A(K,W )

= {F : G(Q̂)/K →W | F (γg) = γF (g), all γ ∈ G(Q)}.

This is the space of modular forms of “level K” and “weight W” for G.
A function F in A is clearly determined by the values F (gα) on the double coset rep-

resentatives, and F (gα) lies in the subspace of W fixed by Γα. This observation gives a
proof of the following.

Proposition 2.3. The space A is finite-dimensional and the map taking F to the elements

F (gα) in WΓα is a linear isomorphism A ∼= ⊕αW
Γα .

We can use the proposition to define an inner product on A with values in Q, by the
formula

(2.4) < F, F ′ >A=
∑

α

w−1
α < F (gα), F ′(gα) >,

where wα = Card(Γα). This is independent of the choice of coset representatives, as the
pairing <,> on W is G(Q)-invariant.

3. Hecke operators.

The Hecke algebra of K is the convolution algebra of locally constant, compactly sup-
ported functions

(3.1)
HK =H(G(Q̂)//K)

={f : K\G(Q̂)/K → Q},

using Haar measure giving K volume 1. This has, as additive basis, the characterisitic
functions char(KtK) of double cosets, and acts Q-linearly on A as follows. Let F ∈ A.
Writing

(3.2) KtK = ∪itiK

where the number of single cosets is finite, we have the formula

(3.3) char(KtK)|F (g) =
∑

i

F (gti).

The following adjoint formula shows that A is a semi-simple HK -module.



4 B. H. GROSS AND G. SAVIN

Proposition 3.4.

< char(KtK)|F, F ′ >A=< F, char(Kt−1K)|F ′ >A .

Proof. This is standard. See, for example, [Shm].

Over the algebraically closed field C, the isotypic decomposition of A⊗C as an HK ⊗C

module is given by the theory of automorphic forms. Let m be an element in

(3.6) HomG(R)(W ⊗ C, L2(G(Q)\G(A)/K)).

If w is an element in W ⊗ C, the function mw = m(w) is smooth. In particular, for any g
in G(A), the complex number mw(g) is well defined. We define an element F = F (m) in
A⊗ C by the formula

(3.6) < F (gf ), w >= mw(1 × gf ),

where gf is in G(Q̂).

Proposition 3.7. The map m 7→ F (m) gives a linear isomorphism of HK ⊗ C-modules

HomG(R)(W ⊗ C, L2(G(Q)\G(A)/K)) ∼= A⊗ C.

Proof. We construct an inverse map. Let F be in A⊗C. If g is an element in G(A), write

g = g∞ × gf where g∞ is in G(R), and gf is in G(Q̂). We define an element m = m(F ) in
HomG(R)(W ⊗ C, L2(G(Q)\G(A)/K)) by the formula

mw(g) =< g∞w, F (gf) > .

The map F 7→ m(F ) is the inverse of the map m 7→ F (m).

4. Spherical operators.

Assume that K =
∏

Kp in G(Q̂). If

(4.1) HKp
= {fp : Kp\G(Qp)/Kp → Q}

is the local Hecke algebra, we obtain a map of Q-algebras HKp
→ HK taking fp to the

function f = fp ⊗ char(
∏

l6=pKl) on G(Q̂). In fact, we obtain an isomorphism of the

restricted tensor product of local algebras (with respect to the unit element) and HK

(4.2) ⊗̂pHKp
∼= HK .

We say the prime p is unramified for K if G(Qp) is split and K ∩ G(Qp) = Kp is a
hyperspecial maximal compact subgroup. In this case, the Satake isomorphism gives an
identification [Ct; pg 148]

(4.3) HKp
⊗Q Q[p1/2] ∼= R(Ĝ) ⊗Z Q[p1/2],
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where Ĝ is the dual Langlands group and R(Ĝ) its representation ring. The half-integral
powers enter only in terms p<λ,ρ>, where λ is a co-character of a maximal torus T ⊂ G⊗Qp,
and ρ is half the sum of the positive roots relative to a Borel subgroup containing T . Since
we have assumed that G is simply connected, < λ, ρ > is always an integer, and the Satake
transform gives an isomorphism of Q-algebras

(4.4) HKp
∼= R(Ĝ) ⊗ Q.

Let T be the commutative Q-subalgebra of HK generated by the local algebras HKp
for

all unramified p. Then by (4.4)

(4.5) T ∼= ⊗̂p unramR(Ĝ) ⊗ Q.

Proposition 4.6. The elements of T give commuting self-adjoint operators on A.

Proof. We have
KtpK = Kt−1

p K

for all tp in G(Qp). Indeed, if T is a split torus in G(Qp), then G(Qp) = KpTKp, by the
Cartan decomposition. Since −1 is in the Weyl group of G, there is an element n in Kl

such that ntpn
−1 = t−1

p . The proposition now follows from Prop. 3.4.

Let F be an eigenvector for T acting on the space A ⊗ C. By (4.4), F gives rise to an
element

(4.7) sp ∈ Hom(R(Ĝ),C)

for all unramified primes p. But the spectrum of R(Ĝ)⊗C consists of the set of semi-simple

conjugacy classes in Ĝ(C). Thus we have shown

Proposition 4.8. If F is an eigenvector for T in A ⊗ C, the eigenvalues determine a

collection {sp} of semi-simple conjugacy classes in Ĝ(C), indexed by the unramified primes

p for K.

We note that by Prop. 4.6 each such eigenvector in A ⊗ C is actually defined over a
totally real number field.

5. The Steinberg subspace.

Assume that G is split and quasi-simple over Qp, and Kp a hyperspecial maximal
compact subgroup of G(Qp). We now consider the space A = A(K,W ) of forms of weight
W and level K in the special case when K = Ip × K ′ where Ip is an Iwahori subgroup
of G(Qp) contained in Kp. The Iwahori Hecke algebra HIp

= H(G(Qp)//Ip) then has
a distinguished rational character, corresponding to the Steinberg representation Stp of
G(Qp). This character sends the standard Iwahori-Matsumoto generators [Lu] of HIp

to
−1.

Let

(5.1) A(Stp) ⊆ A
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be the Q-subspace of modular forms on which HIp
acts by the Steinberg character. This

is an HK′ -submodule of A. Our aim in this section is to show it is a reasonably large
subspace of A, so that there are many automorphic representations with local component
Stp. To first order, we will show that:

(5.2)
dimA(Stp)

dimA
= 1 −

r + 1

p
+O(

1

p2
), r = rank(G).

The algebra HIp
contains the finite sub-algebra H(Kp//Ip). Let ǫp be the restriction to

H(Kp//Ip) of the Steinberg character of HIp
. This character corresponds to the Steinberg

representation of the finite Chevalley group G(p) [Ca]. The space A(Stp) is contained in
the subspace

(5.3) A(ǫp) ⊆ A

on which the finite algebra acts by the character ǫp. To first order, we will show that

(5.4)
dimA(ǫp)

dimA
= 1 −

r

p
+O(

1

p2
), r = rank(G).

Let F be a maximal simplex in the building of G over Qp, which is fixed by the Iwahori
subgroup Ip, and for each non-empty face Fi of F let Ip(i) ⊇ Ip be the stabilizer of Fi.
Let A(i) be the subspace of A of forms of weight W and level K(i) = Ip(i) ×K ′.

Finally, we let A(1) be the subspace of A corresponding to the trivial 1-dimensional
representation of G. Then dimA(1) = 1 when W = Q, and dimA(1) = 0 otherwise.

Proposition 5.5. In the Grothendieck group of finite-dimensional HK′-modules:

A(Stp) + (−1)rA(1) =
∑

Fi

(−1)codimFiA(i)

A(ǫp) =
∑

Fi⊇F0

(−1)codimFiA(i)

where F0 is the hyperspecial vertex fixed by Kp.

Proof. The first follows from the Casselman’s formula [BW]:

∑

Fi

(−1)codimFi dim(πIp(i)) =











1 π = Stp

(−1)r π = 1

0 otherwise

for the Euler characteristic of the continous cohomology of a unitary irreducible representa-
tion π of G(Qp). The second formula follows from the standard resolution of the Steinberg
character of the finite Chevalley group G(p) [Ca; pg 187]. Note: if we include the empty
face F∅, with the stabilizer K(∅) = G, then the formula for A(Stp) can be written without
the correction term A(1).

We can compute dimA(i) if G(Q) acts freely on G(Q̂)/Ip(i) ×K ′. In this case:

(5.6) dimA = (Ip(i) : Ip) dimA(i).

We say that K ′ is p-neat if G(Q) acts freely on G(Q̂)/Ip(i) × K ′ for all i, and that it

is weakly neat if G(Q) acts freely on G(Q̂)/Ip(i) × K ′ for all Ip(i) ⊆ Ip(0) = Kp. The
Proposition and (5.6) give a formula for dimA(Stp) and dimA(ǫp):
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Corollary 5.7. If K ′ is weakly neat, we have

dimA =
r

∏

i=1

pei+1 − 1

p− 1
dimA(0)

and

dimA(ǫp) =

r
∏

i=1

pei dimA(0).

If K ′ is neat we also have

dimA(Stp) =

r
∏

i=1

(pei − 1) dimA(0) − (−1)r dimA(1).

Here e1, e2, . . . , er are the exponents for the Weyl group of G [Bu; pg 118].

Proof. This is standard inclusion-exclusion [Se1; pgs 664-667]. For example,

r
∏

i=1

pei+1 − 1

p− 1
= (Kp : Ip) = (G(p) : B(p))

r
∏

i=1

pei = pdimU(p) =
∑

Ip(i)⊆Kp

(−1)codimFi(Kp : Ip(i))

where B(p) is a Borel subgroup of G(p) and U(p) the unipotent radical of B(p).

6. The case G = Aut(O).
We work out some details of the theory presented in this chapter for the simplest case

of a group G with a model over Z with G(R) compact, and G(Qp) split for all p. Namely
G is the simple group of type G2 over Q defined as the automorphism group of Cayley’s
octonion algebra O [J3]. We recall that O is a non-associative division algebra of rank 8
over Q:

(6.1)











Q + Qe1 + Qe2 + Qe3 + Qe4 + Qe5 + Qe6 + Qe7

e2i = −1 all i

ei · (ei+1 · ei+3) = (ei · ei+1) · ei+3 all i ( mod 7).

The map x = a0 +
∑

aiei 7→ x̄ = a0 −
∑

aiei defines an anti-involution of O, with fixed
field Q.

On O, we have the trace

(6.2)
Tr : O → Q

x 7→ x+ x̄ = 2a0
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which is Q-linear, and the norm

(6.3)
N : O → Q

x 7→ x · x̄ = x̄ · x = a2
0 +

∑

a2
i

which satisifies N(x · y) = N(x)N(y). Although the multiplication is neither commutative
nor associative, we have

(6.4)
Tr(x · y) = Tr(y · x)

Tr(x · (y · z)) = Tr((x · y) · z).

We denote the latter rational number simply by Tr(xyz).
Let R [Co] be the Z-lattice in O spanned by the ei and the elements

(6.5)



















1
2 (1 + e1 + e2 + e4)
1
2 (1 + e1 + e3 + e7)
1
2
(1 + e1 + e5 + e6)

1
2 (e1 + e2 + e3 + e5).

Then R is stable under octonionic multiplication, and G = Aut(R) is the unique model
over Z with good reduction at all primes [Gr]. We write G(p) for the finite group G(Fp) =
Aut(R/pR).

The groups Γα stabilizing the cosets gαK (2.2) have orders dividing 26337 [Se2]. When

K ⊆ G(Ẑ) they are all subgroups of G(Z). The group G(Z) has order 26337 = 12096, and
is isomorphic to G(2) under reduction modulo 2 [A].

The irreducible representations W of G considered in Section 1 of this chapter, can all
be constructed from the irreducible representation V on octonions with trace 0. Namely,
the 14-dimensional adjoint representation g of G is the kernel of the map

(6.6)
∧2V → V

v ∧ w 7→ v · w − w · v

and for k1, k2 ≥ 0 there is an irreducible representation W = W (k1, k2) of G defined over

Q which occurs as the G-submodule of highest weight in V ⊗k1
⊗ g⊗k2

. W has dimension

(6.7)
(k1 + 1)(k2 + 1)(k1 + k2 + 2)(k1 + 2k2 + 3)(k1 + 3k2 + 4)(2k1 + 3k2 + 5)

120
.

We fix the inner product <,> on W by taking < v,w >= Tr(v̄w) on V , using the
second exterior power of this product on g ⊂ ∧2V , and then taking the tensor product of

the previously defined inner products on W ⊆ V ⊗k1
⊗ g⊗k2

.
Let Kp = G(Zp). We make the Satake isomorphism (4.4)

HKp
∼= R(Ĝ) ⊗ Q
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completely explicit. Let T ⊂ B ⊂ G be a maximal split torus in a Borel subgroup, all
defined over Zp. Let {α1, α2} be the corresponding root basis for the character group of
T , where α1 long and α2 short, and let ω̌1 and ω̌2 be the dual basis for the co-characters.
We define

(6.8)

{

t1 = char(Kpω̌1(p)Kp)

t2 = char(Kpω̌2(p)Kp)

in HKp
. These have degrees (the number of single Kp-cosets)

(6.9)

{

d(t1) = pp
6−1
p−1

d(t2) = p5 p
6−1
p−1

The elements ω̌1 and ω̌2 are the fundamental weights of the dual group Ĝ(C) = G2(C).

Since ω̌1 is short and ω̌2 is long, ω̌1 corresponds to the 7-dimensional representation V̂ and
ω̌2 corresponds to the 14-dimensional adjoint representation ĝ. Let χ1 and χ2 denote the
characters of these representations, so R(Ĝ) = Z[χ1, χ2].

In the inverse of the Satake isomorphism:

(6.10)

{

χ1 maps to (t1 + 1)/p3

χ2 maps to (t2 + t1 + p4 + 1)/p5

Hence HKp
= Q[t1, t2]. If F in A⊗ R is an eigenvector for HKp

with

(6.11)

{

t1|F = λ1F

t2|F = λ2F

then the semi-simple class s = sp(F ) in Ĝ(C) has the following characteristic polynomial

on V̂ :

(6.12) det(1 − sT |V̂ ) = 1 − a1T + a2T
2 − a3T

3 + a4T
4 − a5T

5 + a6T
6 − T 7

where
a1 =(λ1 + 1)/p3

a2 =(λ2 + (p2 + 1)λ1 + (p4 + p2 + 1))/p5

a3 =a2
1 + a1 − a2

and ai = a7−i for i = 1, . . . , 6.
The Iwahori Hecke algebra HIp

has generators T0, T1, T2 and relations

(6.13)

(Ti − p)(Ti + 1) = 0 i = 0, 1, 2

T0T2 = T2T0

T0T1T0 = T1T0T1

(T1T2)
3 = (T2T1)

3.

The subalgebra H(Kp//Ip) ∼= H(G(p)//B(p)) has generators T1 and T2.
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7. Examples of modular forms on G = Aut(O).

We now do some explicit examples, where K is a subgroup of finite index in G(Ẑ). Let
p be a rational prime, and let B(p) ⊂ G(p) be a Borel subgroup. We let

(7.1) K(p) ⊆ K0(p) ⊆ G(Ẑ)

be the subgroups reducing to 1 (mod p) and to B(p) (mod p) respectively. Then K(p) is

a normal subgroup of G(Ẑ), and the local component of K0(p) at p is an Iwahori subgroup.
In particular, the spaces

(7.2) A(Stp) ⊆ A(ǫp) ⊆ A(W,K0(p))

are defined.
Consider first the case when K = K(2) and W is arbitrary. Since G(Q̂) = G(Q)G(Ẑ),

and G(Z) = G(2) [Gr],

(7.3) G(Q̂) = G(Q) ×K(2)

so we have one double coset, with Γ = 1. Hence by (2.3)

(7.4) A(W,K(2)) ∼= W

as Q-vector spaces. This is actually an isomorphism of G(2) = G(Z)-modules. By (2.3)
we obtain isomorphisms

(7.5)

{

A(W,K0(2)) ∼= WB(2)

A(W,G(Ẑ)) ∼= WG(2)

of Q-vector spaces. The former is an isomorphism of H(G(Ẑ)//K0(2)) ∼= H(G(2)//B(2))-
modules.

Consider the special case when W = W (1, 1) has dimension 64 = 26. The restriction of

W to G(Ẑ) is isomorphic to the Steinberg representation st2 of G(2). Hence

(7.6) A(ǫ2) = A(W,K0(2))

is one-dimensional.

Proposition 7.7. There exists a unique automorphic representation π of G(A) with π∞ ∼=
W (1, 1)⊗ C, π2

∼= St2, the Steinberg representation, and πp unramified for all p 6= 2.

Proof. The K0(2)-fixed vectors in such a π contribute a line to the space A(St2) ⊗ C, so
we must show that A(ǫ2) = A(St2).

The elements T1 and T2 generate the Hecke algebra H(G(2)//B(2)). Since T1 = T2 = −1
on A(ǫ2), and T0T1T0 = T1T0T1, we have −T 2

0 = T0 on A(ǫ2), so T0 must act as −1 also.
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Finally, consider the case when W = W (0, 0) = Q is the trivial representation of G and
K = K0(p). From (7.2) we have an isomorphism of Q-vector spaces

(7.8)

{

A(Q, K0(p)) ∼= (Ind
G(p)
B(p) Q)G(Z)

A(Q, K0(p))(ǫp) ∼= (stp)
G(Z)

Here stp is the Steinberg representation of G(p). Its dimension is p6, and appears with
multiplicity one in the induced representation from B(p).

Let d(p) = dim(stp)
G(Z). For small primes p, we have the following table (computed by

D. Pollack and J. Lansky):

(7.9)
p 2 3 5 7 11 13 17 19
d(p) 0 0 1 13 142 416 1980 3931

For p 6= 2, 3, 7, K. Magaard has shown that

(7.10) d(p) = (p6 ± 56p3 + 315p2 + ap+ b)/12096

where the sign ± is chosen so that p ≡ ±1 (mod 3), and the coefficients a and b depend
on the conguence of p modulo 24:

(7.11)
p ≡ 1 (24) 5 (24) 7 (24) 11 (24) 13 (24) 17 (24) 19 (24) 23 (24)
a 1932 −420 420 −1932 1932 −420 420 −1932
b 9792 −2304 3744 3744 3744 3744 −2304 9792

Proposition 7.12. There is a unique automorphic representation π of G(A) with π∞ ∼= C,

π5
∼= St5, and πp unramified for p 6= 5.

Proof. We must show that

A(Q, K0(5))(St5)

is one-dimensional. To do this, we will compute the dimensions of the spaces A(Q, K(i)),
where K(i) =

∏

p6=5G(Zp) × I5(i) and I5(i) is an arbitrary parahoric at prime 5. The

parahorics are indexed by the facets of a 30-60-90 triangle (a maximal simplex in the
building, the white vertex is hyperspecial), and we will find the dimensions:

1


3


4


7
 3


1


3


This gives dimA(St5) = 7 − (3 + 3 + 4) + (1 + 1 + 3) − 1 = 1 by Casselman’s formula
(5.5).

The dimensions
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1


3


4


7


are easily computed by the above considerations, as the corresponding parahorics I5(i)
are contained in G(Z5). Now let I5(i) be the maximal parahoric whose reduction (mod 5)
is SL3(5). Using the mass formula [Gr], we find:

∑

G(Q)\G(Q̂)/K(i)

1

#Γα
=

1

253
.

Since every finite subgroup of K(i) has order dividing 253, we find a single double coset,
with stabilizer of order 253, reducing to the normalizer of a maximal split torus in SL3(5).
Hence dimA(Q, K(i)) = 1, so we have obtained the dimensions:

1


3


4


7


1


Since the normalizer of a split maximal torus in SL3(5) has precisely 3 orbits on P2(5),
we obtain the dimensions:

1


3


4


7
 3


1


It remains to compute the dimension for K(i) with local component I5(i) maximal,
whose reduction (mod 5) is split SO4(5). Here the mass formula yields

∑

G(Q)\G(Q̂)/K(i)

1

#Γα
=

31

2632
.

Hence the number of double cosets is either 2 or 3. Since the order of a finite subgroup
of K(i) divides 2632, and we can not write the mass as a sum of two such terms, the
dimension is 3 as claimed.

II Motives

In this chapter, we present a conjecture on motives of rank 7 over Q associated to
automorphic forms on the anisotropic form G = Aut(O) of G2. Since we hope to construct
these motives as the orthogonal complement of a Hodge class in a motive of rank 8, we
give local criteria which allow one to show that a subgroup Γ of SO8 is contained in either
Spin7 or G2 = Spin7 ∩ SO7. Finally, we discuss the simply connected form of E7 of rank
3 over Q, its 56-dimensional representation, and the dual pair G×G′ = Aut(O)×PGSp6

in the associated adjoint group.
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1. A conjecture on G2-motives.

Let G = Aut(R) be the form of G over Z constructed in (6.2) in Chapter I, and fix a
finite, non-empty set S of primes. For p in S, let Kp ⊂ G(Zp) be an Iwahori subgroup.
For p not in S, let Kp = G(Zp).

Fix an irreducible representation W of G, and put K =
∏

pKp. Let A = A(W,K) be
the associated space of automorphic forms, and

(1.1) AS = A(StS) ⊆ A

the subspace which is localized at the Steinberg representation Stp, for all primes p in S.
Then AS is a finite-dimensional inner product space over Q, with

(1.2) dimAS ≈
dimW

12096

∏

p∈S

(p5 − 1)(p− 1)

by (5.2) of Section 1.
The spherical Hecke algebra ⊗̂p/∈SH(G(Qp)//G(Zp)) acts on AS , via self-adjoint com-

muting operators. Let F be a simultaneous eigenvector, defined over a totally real number-
field E. Then F corresponds to an irreducible automorphic representation of G(A)

(1.3) π = ⊗̂πv

with π∞ ∼= W ⊗ C, πp ∼= Stp for all p in S and πp spherical for all primes p not in S.

Conjecture 1.4. Associated to the eigenvector F in AS (or to the automorphic represen-

tation π ), there is a motive M of rank 7 and weight 0 over Q with coeffcients in E. The

motive M enjoys the following local properties.

(1) Assume W = W (k1, k2). The Hodge components Mp,q of MB⊗C have rank 1 over

E ⊗ C for those (p, q) which satisfy p+ q = 0 and

p =3 + k1 + 2k2

2 + k1 + k2

1 + k2

0

−(1 + k2)

−(2 + k1 + k2)

−(3 + k1 + 2k2).

Otherwise Mp,q = 0. The real Frobenius F∞ acts as −1 on M0,0.

(2) Assume p /∈ S, so πp is spherical with Satake parameter sp. Let λ be a finite prime

of E not dividing p. Then the λ-adic representation Mλ of Gal(Q̄/Q) is unramified

at p. If Fp is a Frobenius element, then

det(1 − FpT |Mλ) = det(1 − spT |V̂C)
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has coefficients in E.

(3) Assume p ∈ S, so πp ∼= Stp. Let λ be a finite prime of E not dividing p. Then the

λ-adic representation Mλ of Gal(Q̄/Q) is tamely ramified at p, and isomorphic to

S6H1(X,Eλ)(3), where X is a Tate elliptic curve over Qp.

In particular, part 2) of the conjecture implies that the local components of π are all
tempered. This need not be true for arbitrary eigenvectors F in A⊗C, but should be true
for eigenvectors in the subspace A(Stp) for any p in S. Also, we expect the spectrum of
the spherical Hecke algebra to be multiplicity free on AS ⊗ R.

If the motive of Conj. 1.4 exists, its L-function at finite primes is given by the Euler
product

(1.5) L(M, s) =
∏

p∈S

(1 − p−3−s)−1
∏

p/∈S

det(1 − sp · p
−s|V̂)−1

which converges for Re(s) > 1. This is a Dirichlet series
∑

n≥1 ann
−s with coefficients in

the subfield E of C. If [De; pg 329]

(1.6) L∞(M, s) = ΓC(s+ (3 + k1 + 2k2))ΓC(s+ (2 + k1 + k2))ΓC(s+ (1 + k2))ΓR(s+ 1)

is the Archimedian L-factor, then the product Λ(M, s) = L∞(M, s)L(M, s) should have
an analytic continuation to the entire s-plane, and satisfy the functional equation

(1.7) Λ(M, s) = N
1
2−sΛ(M, 1 − s)

with exponential factor N =
∏

p∈S p
6.

The fact that F∞ = −1 on M0,0 implies that s = 0 and s = 1 are critical for L(M, s),
in the sense of Deligne [De; pg 318]. If M is realized as the complement of a Hodge class
in the orthogonal motive M ′ of rank 8, as suggested in the introduction, then

(1.8)

{

L(M ′, s) =ζ(s)L(M, s)

L(M, 1) =Ress=1L(M ′, s)ds.

2. Subgroups of O8.

As described in the introduction, we hope to construct M ⊂M ′ ⊆ H6
c (X,F)(3), where

M ′ is an orthogonal motive of rank 8. It is therefore useful to have criteria which allow
to conclude that the motivic Galois group of M ′ is a proper subgroup of the orthogonal
group O(M ′) = O8.

Let W be a non-degenerate quadratic space of dimension 8 over C, and let s be a
semi-simple conjugacy class in O(W ) = O8. Let

(2.1) f(T ) = det(1 − sT |W ) =
8

∑

k=0

(−1)k Tr(s| ∧k W )T k

be the characteristic polynomial of s on W .
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Proposition 2.2.

1 ) If s lives in the normal subgroup SO8 of elements with det(s) = 1, then f(T ) has the

form

f(T ) = 1 − AT +BT 2 − CT 3 +DT 4 − CT 5 +BT 6 − AT 7 + T 8

where the coefficients (A,B,C,D) are (arbitrary) elements in C4.

2 ) If s lives in the subgroup SO7 ⊂ SO8 fixing a non-isotropic line, or in the subgroup

SO3 × SO5 ⊂ SO8 stabilizing an orthogonal decomposition W = W3 ⊕ W5, then the

coefficients (A,B,C,D) of f(T ) are (arbitrary) elements in the hyperplane

2A− 2B + 2C −D − 2 = 0.

3 ) If s lies in the subgroup Spin7 ⊂ SO8 embedded by the spin representation, or in

the subgroup SL2 × Sp4/∆ < ±1 >∼= Spin3 × Spin5/∆ < ±1 >⊂ SO8 embedded by the

tensor product of the two spin representations, then the coefficients (A,B,C,D) of f(T )
are (arbitrary) elements in the hypersurface

A2(D + 2B + 1) = C2 + 2AC + A4.

4 ) If s lies in the subgroup G2 = Spin7 ∩ SO7 ⊂ SO8 of Spin7 fixing a non-isotropic

line, or in the subgroup PGL3 ⊂ SO8 embedded by the adjoint representation, then the

coefficients A and B of f(T ) are (arbitrary) elements of C, and the coefficients C and D
are given by

{

C = A2 − A

D = 2(A2 −B − 1).

Proof. 1) This is well-known. 2) If s lies in SO7, then f(T ) = (T − 1)g(T ), so f(1) = 1.
This gives the linear relation on coefficients. In fact, g(T ) = (T − 1)h(T ), although this
gives no new relations. The same holds for s in SO3×SO5, as s = s1×s2, where s1 fixes a
vector in the 3-dimensional representation W3, and s2 fixes a vector in the 5-dimensional
representation W5.

3) In these two cases, the smallest degree invariant lies in ∧4W , where there is a unique
fixed line. The polynomial relation is computed from the representation rings of the two
groups.

4) These equations are simply a combination of 2) and 3). They state that the roots
of f(T ) have the form {1, 1, α, β, γ, α−1, β−1, γ−1} with αβγ = 1. This is also true for
semi-simple elements in PGL3.

We say that a subgroup Γ ⊆ SO8 is locally contained in SO7 if the coefficients of the
characteristic polynomials of all elements s in Γ satisfy the equation in 2), Prop. 2.2.
Similarly, we say that Γ ⊆ SO8 is locally contained in Spin7 if the coefficients of the
characteristic polynomials of all elements s in Γ satisfy the equation in 3), Prop 2.2. Note
that the group SO3 × SO5 is locally contained in SO7, even though it does not globally
fix a line. Similarly, the group Spin3 × Spin5/∆ < ±1 > is locally contained in Spin7. If
we introduce regular unipotent elements, we can eliminate these examples.
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Proposition 2.3. Let Γ ⊆ SO8 be a subgroup which acts semi-simply on W . Assume

that

(1) Γ contains a regular unipotent element u.
(2) Γ is locally contained in SO7.

Then Γ is contained in SO7.

Similarly, assume that

(1) Γ contains a regular unipotent element u.
(2) Γ is locally contained in Spin7.

Then Γ is contained in Spin7.

Proof. We the fact that the connected, reductive subgroups of SO8 containing a regular
unipotent u form a chain:

Spin7

SO8 G2 PGL2

SO7

where G2 = SO7 ∩ Spin7, and PGL2 is the pricipal subgroup of SO8 determined by u.
Let C ⊆ SO8 be the Zariski closure of Γ. Then the connected component C0 is reductive,

as it has a faithful semi-simple representation W . It also contains a regular unipotent
element, so is one of the groups in the chain. If Γ is locally contained in SO7, then so is
C, hence

C0 = SO7, G2 or PGL2.

The normalizers of these in SO8 are C0× < ±1 >, but −1 is not locally contained in SO7.
Hence C is connected, and Γ is contained in SO7.

The same argument works when Γ is locally contained in Spin7, but now C can be
G2× < ±1 > or PGL2× < ±1 >. Since these are both contained in Spin7, Γ is contained
in Spin7.

Corollary 2.4. Let Γ ⊆ SO8 be a subgroup which acts semi-simply on W . Assume that

(1) Γ contains a regular unipotent element u.
(2) Γ is locally contained in G2: the coefficients of the characteristic polynomial of

s ∈ Γ satisfy the equations in Prop. 2.2, part 4 ).

Then Γ is contained in G2.

Proof. This is a combination of the two results of Prop. 2.3, as G2 = Spin7 ∩SO7 in SO8.
The proof shows that the Zariski closure of Γ in O8 is either G2, or the principal PGL2 in
G2 determined by u.

3. A form of E7.

As mentioned in the introduction, there is a (unique) form H of the split adjoint group
of type E7, which has rank 3 over Q. This group is split over Qp for all primes p, and acts
on the exceptional tube domain over R; it can be constructed from the Cayley division
algebra O [Fr]. We sketch such a construction of the simply connected double cover Hsc

over Q, which lies in the exact sequence of algebraic groups

(3.1) 1 → µ2 → Hsc → H → 1.
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The constuction is based on the existence of a faithful representation W of dimenesion
56 over Q. We note that the only other simply-connected group of type E7 admitting a
56-dimensional representation over Q is the split form.

Let JO be the exceptional 27-dimensional Jordan algebra of all 3×3 Hermitian symmetric
matrices over O:

(3.2) A =





a z ȳ
z̄ b x
y x̄ c





where a, b, c lie in Q and x, y, z lie in O. The Jordan multiplication is given by the formula

(3.3) A ◦B =
1

2
(AB +BA).

There is a cubic form det : JO → Q, defined by

(3.4) det(A) = abc+ Tr(xyz) − aN(x) − bN(y)− cN(z).

Let (A,B,C) be the unique symmetric trilinear form such that [EG]

(3.5) (A,A,A) = 6 det(A).

LetM be the reductive algebraic group over Q of invertible linear mappingsm : JO → JO

which satisfy

(3.6) det(m(A)) = λ(m) det(A)

for a similitude λ(m) in Q×. The center of M is Gm, acting by scalar matrices, and the
kernel of the morphism λ : M → Gm is a simply connected group of type E6 and rank 2
over Q [CS]. On the center, λ(a) = a3.

Let N be a unipotent abelian group over Q, isomorphic to JO. In Hsc we have a maximal
parabolic subgroup

(3.7) Psc = MN

where the conjugation action of M on N is given by

(3.8) mAm−1 = λ−1(m) m(A).

Note that this action has a kernel µ2 (the center of Hsc).
We now define a representation of Psc on the 56-dimensional module

(3.9) W = Q ⊕ JO ⊕ J∗
O ⊕ Q∗,

where J∗
O = Hom(JO,Q), and Q∗ = Hom(Q,Q) ∼= Q. The subgroup M acts on W by

(3.10) m(y, Y, Y ∗, y∗) = (λ(m)y,m(Y ), m∗(Y ∗), λ−1(m)y∗),
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where m∗ is defined as follows; if < X, Y ∗ > is the pairing JO × J∗
O → Q, we have

< mX,m∗Y ∗ >=< X, Y ∗ > for all X ∈ JO and Y ∗ ∈ J∗
O. One can give complicated

formulas for the action of N on W [Ki; pg 143], but since we are in characterisitic 0, it
suffices to define the action of Lie(N) ∼= JO. This acts by

(3.11) X(y, Y, Y ∗, y∗) = (0, yX,X × Y,< X, Y ∗ >).

where X × Y is the element of J∗
O mapping Z to (X, Y, Z).

Using (3.8), one can check that the formulas (3.10) and (3.11) define an action of Psc
on W , which preserves the natural symplectic form

(3.12) {(x,X,X∗, x∗), (y, Y, Y ∗, y∗)} = (xy∗ − yx∗) + (< X, Y ∗ > − < Y,X∗ >).

The group Hsc ⊂ Sp(W ) is generated by Psc and an element w of order 4, giving a simple
reflection in the Weyl group which normalizes M (a Levi factor of Psc).

To define w in Sp(W ), we need to choose a polarization I of JO with det(I) = 1 and
I > 0 in JO ⊗R [EG; Ch. 2]. Since M acts transitively on polarizations over Q, there is no
loss of generality in taking I to be the identity matrix in JO. This gives a positive-definite
bilinear form on JO, defined by

(3.13) < A,B >= −(A,B, I) + (A, I, I)(B, I, I)/4.

If I is the identity matrix, then < A,B >= Tr(AB) = Tr(A ◦ B) = Tr(BA). This form
defines an identification JO

∼= J∗
O. With this identification, we define w, which depends on

I and satisfies w2 = −1, by

(3.14) w(y, Y, Y ∗, y∗) = (−y∗,−Y ∗, Y, y).

Then Hsc =< Psc, w > in Sp(W). The element w acts by inversion on the center Gm of
M , and w2 is an involution in the center of M , which generates the center µ2 of Hsc. In
the quotient H = Hsc/µ2, the image w̄ of w has order 2, and gives the Cartan involution
of Lie(H) over R.

The adjoint group H has the maximal parabolic

(3.15) P = Psc/µ2 = MN

with isomorphic Levi factor (M/µ2
∼= M), but with a different conjugation action of M

on N ∼= JO:

(3.16) mAm−1 = m(A).

Note that this action is faithful.
We can use the Coxeter order R ⊂ O to give a model for Hsc over Z with good reduction

at all primes p [Gr]. Let JR ⊂ JO be the lattice consisitng of all elements with a, b, c in Z,
and x, y, z in R. Then

(3.17) WZ = Z ⊕ JR ⊕ J∗
R ⊕ Z∗

is a lattice in W , where J∗
R = Hom(JR,Z) ∼= JR [EG], and Z∗ = Hom(Z,Z) ∼= Z. The

stabilizer of WZ gives a desired model with Hsc(Z) ⊂ Sp56(Z). Then Lie(Hsc/Z) ⊂2

Lie(H/Z) as lattices in Lie(H). If we normalize the Killing form so that the determinat
of Lie(Hsc/Z) is 2, then Lie(H/Z) is the dual lattice.
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4. Dual pair G×G′.

We now give two constructions of the dual pair G×G′ = Aut(O)×PGSp6 in H over Q.
The first uses the relative root system, and the second our construction of H as a group
generated by P and w̄.

Over Q, the simple group H has index [Ti; pgs 59-60]

(4.1)

and relative root system Φ of type C3. Let S be a maximal split torus of dimension 3
in H. The derived group of the centralizer C(S) (the semi-simple anisotropic kernel) is
isomorphic to the group [Gr]

(4.2)
Spin8(O) =

{(γ1, γ2, γ3) ∈ GL(O)3 | N(γix) = N(x), Tr(γ1x · γ2y · γ3z) = Tr(xyz)}.

The group has 3 orthogonal representations V1, V2, V3 of dimension 8, via the action of
γ1, γ2, γ3 on O.

The 6 long root spaces Lie(H)α (α = ±2ei) for S have dimension 1, and trivial action
of Spin8(O). The 12 short root spaces Lie(H)α (α = ±ei ± ej) for S have dimension 8,
and Spin8(O) acts on Lie(H)±ei±ej

by the representation Vk, (i 6= j 6= k).
From this viewpoint G is the subgroup of all triples (γ, γ, γ) in Spin8(O) with γ in

Aut(O). Since γ(1) = 1, the restriction of each Vi to G is isomorphic to Q ⊕ V . Hence
Lie(H)Gα has dimension 1 for all α ∈ Φ, and the centralizer of G in H is a split group of
type C3. Since the roots Φ give a basis for the character group of S, G′ is of adjoint type,
and G′ = PGSp6. Conversely, the centralizer of G′ is contained in Spin8(O), and fixes
a vector in each 8-dimensional representation Vi. This shows that the centralizer of G′ is
contained in G, hence equal to G.

The following alternative construction of the closed subgroup G × G′ of H uses our
construction in the previous section. The group G = Aut(O) is a subgroup of M ⊂ P , via
tha action on the matrix entries x, y, z of A in JO. Let U ⊂ N be the group fixed by this
action, consisting of matrices with rational entries x, y, z. Then U has dimension 6 over
Q. We have an embedding of L = GL3 into M given by

(4.3) det(g)−1 gAgt.

where det(g) and gt denote the determinant and the transpose of the 3×3 matrix g. Note
that the restriction of λ to L ∼= GL3 is det(g)−1. The image stabilizes the subgroup U ,
and the semi-direct product

(4.4) Q = LU
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is a subgroup of P , commuting with G.
Assume that the polarization I defining w has rational entries, (for example, take I

the identity matrix). Then the image w̄ of w in H commutes with G and normalizes L.
Moreover,

(4.5) G′ = PGSp6 =< Q, w̄ >

in H. This gives the dual pair G×G′ in H.

III Real correspondences

Let H(R) be the adjoint algebraic group of type E7 whose connected component is the
group of conformal transformations of the exceptional symmetric domain. We have the
dual pair

(0.1) G(R) ×G′(R) = Aut(O ⊗ R) × PGSp6(R)

in H(R) with G(R) the compact form of G2.

Let Π̂ be the minimal representation of H(R). In this chapter we show that

(0.2) Π|G(R)×G′(R) = ⊕̂ππ ⊗ Θ(π)

where the sum is taken over all finite dimensional representations of G(R) and Θ(π) is an
irreducible representation whose restriction to Sp6(R) is a sum of a holomorphic and an
anti-holomorphic discrete series representation. The lift π 7→ Θ(π) is functorial for the
inclusion of dual groups G2(C) → Spin7(C) (note that G2 is the stabilizer of a generic
vector in the spin-module of Spin7).

1. Minimal representation of Hsc(R).
Let Hsc(R) be the simply connected group of type E7,3 over R. Its real rank is 3 and the

reduced root system is C3. Let ei − ej , (1 ≤ i < j ≤ 3) and ei + ej , (1 ≤ i ≤ j ≤ 3) be the
standard set of positive roots. The root spaces corresponding to ei + ej , (1 ≤ i < j ≤ 3)
are 8-dimensional and can be identified with O ⊗ R. The root spaces corresponding to
strongly othogonal 2ei are one-dimensional, hence we have an embedding

(1.1) SL2(R) × SL2(R) × SL2(R) ⊂ Hsc(R).

Choose Ksc(R), a maximal compact subgroup of Hsc(R), such that

(1.2) Z1(R) × Z2(R) × Z3(R) = Ksc(R) ∩ SL2(R) × SL2(R) × SL2(R)

is a compact maximal Cartan subgroup of SL2(R) × SL2(R) × SL2(R). Let

(1.3) Z(R) = Ksc(R) ∩ SL2(R)

where SL2(R) ⊂ SL2(R) × SL2(R) × SL2(R) is diagonally embedded. Note that Z(R) ∼=
SO2(R) is the center of Ksc(R), and < ±1 >⊂ Z(R) is the center of Hsc(R).
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We henceforth denote byHsc, Ksc, Z ... the complexifications ofHsc(R), Ksc(R) Z(R)...
Let h and k be the Lie algebras of Hsc and Ksc. Then

(1.4) h = p− ⊕ k ⊕ p+

where p± are two fundamental 27-dimensional representations of the exceptional Lie alge-
bra e6 = [k, k] of type E6. Under the action of Z1 × Z2 × Z3, p+ decomposes as a sum of
root spaces γi + γj , (1 ≤ i ≤ j ≤ 3).

Let e−, z, e+ be a standard basis of sl(2) ⊂ sl(2) ⊕ sl(2) ⊕ sl(2) ⊂ h such that z spans
the Lie algebra of Z, e− ∈ p− and e+ ∈ p+.

Let λ+ be the highest weight of the irreducible e6-module p+. Let E(n) be the irreducible
representation of e6 with highest weight nλ+. Since k = e6 ⊕ Cz, let E(n, k) be the
representation of k such that the restriction to e6 is isomorphic to E(n) and z acts via
the scalar k. Let Π+ be the irreducible (h, Ksc)-module corresponding to a holomorphic
representation of Hsc(R), with Ksc-types [Wl]:

(1.5) Π+|Ksc
= ⊕n≥0E(n, 2n+ 12).

The annihilator of Π+ in the enveloping algebra of h is Joseph’s ideal. In particular, the
Gelfand-Kirillov dimension of Π+ is the smallest amongst non-trivial modules. There is also
an anti-holomorphic module Π−, contragredient to Π+. By (1.5) the center < ±1 >⊂ Z(R)
acts trivially on Π− and Π+.

Let Π̂− and Π̂+ denote the unitary completion of Π− and Π+. Since Hsc(R) and H(R)
are related by the exact sequence

(1.6) 1 →< ±1 >→ Hsc(R) → H(R) → R×/(R×)2 → 1,

it follows that there exist unique representation Π̂ of H(R) such that

(1.7) Π̂|Hsc(R) = Π̂+ ⊕ Π̂−.

It is precisely this representation that we call the minimal representation of H(R).

2. Dual pairs.

We now describe several dual pairs in h using Jordan algebras. Note that

(2.1) x ◦ y =
1

2
[[x, e−], y]

gives a Jordan product on p+. Then (p+, ◦) is isomorphic to the exceptional Jordan algebra
of 3 × 3 hermitian matrices

(2.2)





d1 z1,2 z̄1,3
z̄1,2 d2 z2,3
z1,3 z̄2,3 d3





with coefficients in the octonion algebra over C. Under this isomorphism, the 1-dimensional
root spaces 2γi, (1 ≤ i ≤ 3) are given by diagonal matrices such that dj = 0 if j 6= i, and
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the 8-dimensional root spaces γi + γj , (i < j) are given by off-diagonal matrices such that
zk,l = 0 if {k, l} 6= {i, j}.

Let q+ ⊂ p+ be a Jordan subalgebra containing e+. Let

(2.3) a = Ck(q
+).

Assume, conversly, that q+ is the set of all elements in p+ annihilated by a. Let u = Ck(a),
and q− ⊂ p− such that q+ = [e+, [e+, q−]]. Then

(2.4) b = q− ⊕ u ⊕ q+

is the centralizer of a in b. Obviously, the converse is also true, i.e. a×b is a dual reductive
pair.

Some of the possible cases are:

(2.5)

dim q+ a b u

1 f4 sl(2) u(1)
3 d4 sl(2) ⊕ sl(2) ⊕ sl(2) u(1) ⊕ u(1) ⊕ u(1)
6 g2 sp(6) u(3)

where the subalgebra q+ is given respectively by 3 × 3 scalar, diagonal and symmetric
matrices with coefficients in C.

3. Correspondences.

In this section we restrict the representation Π+ to the dual pairs A(R) × B(R) given
by (2.5), with A(R) compact.

We start with A(R) = F4(R). The 27-dimensional module p+ decomposes 1+26, under
the action of F4(R). Let λ the highest weight of the 26-dimensional summand, and let
F (n) be the irreducible representation of F4(R) with highest weight nλ. By Thm. 6.1 in
[HPS]

(3.1) E(n) = ⊕m≤nF (m).

Proposition 3.2. Consider the dual pair F4(R) × SL2(R). Then

Π+|F4(R)×sl(2) = ⊕n≥0F (n) ⊗ d(2n+ 12),

where d(n) is the irreducible (sl(2), Z)-module corresponding to the holomorphic discrete

series of SL2(R) with the minimal Z-type n.

Proof. By (3.1) one can write

Π+|F4(R)×sl(2) = ⊕n≥0F (n) ⊗ Vn.

where Vn are certain (sl(2), Z)-modules. Since F (n) appears in E(k, 2k + 12) only for
k = n, n + 1, . . . , Z-types of Vn are 2n + 12, 2n + 14, . . . and are one-dimensional. The
proposition is proved.

Next, consider the case A(R) = D4(R). Then D4(R)-invariant subspaces of p+ are
precisely the root spaces. The three 8-dimensional root spaces are 3 different fundamental
8-dimensional representations of D4(R). Let λi, (1 ≤ i ≤ 3) be the highest weight of the
fundamental representation given by the root space γj + γk, where {j, k} = {1, 2, 3} \ {i}.
Let D(a1, a2, a3) be the irreducible representation of D4(R) with a highest weight a1λ1 +
a2λ2 + a3λ3.
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Proposition 3.3. Consider the dual pair D4(R) × SL2(R)3. Then

Π+|D4(R)×sl(2)3 = ⊕a1,a2,a3≥0D(a1, a2, a3)⊗d(a2 +a3 +4)⊗d(a1 +a3 +4)⊗d(a1 +a2 +4),

where d(n) is the irreducible (sl(2), Z)-module corresponding to the holomorphic discrete

series of SL2(R) with the minimal Z-type n.

Proof. We want to decompose E(n, 2n) with respect to the action of D4 × Z1 × Z2 × Z3.
Write

E(n, 2n) = Γ(L⊗n),

where L is a line bundle on the flag variety. Since E(1, 2) ∼= p+, we know how to decompose
E(1, 2). Let vi ∈ Γ(L) be highest weight vectors of the three 8-dimensional representations
with the highest weights λi. Let wi ∈ Γ(L) be non-zero vectors with weights 2γi. Let ai
and ri (i = 1, 2, 3), be non-negative integers such that

a1 + a2 + a3 + r1 + r2 + r3 = n.

Then
va1
1 va2

2 va3
3 wr11 w

r2
2 w

r3
3 ∈ L⊗n

generates a D4-module isomorphic to D(a1, a2, a3), with a Z1 × Z2 × Z3-type

(a2 + a3 + 2r1, a1 + a2 + 2r2, a1 + a2 + 2r3).

Note that different choices of ai and ri produce non-isomorphic modules. We claim that
these modules give a complete decomposition of E(n, 2n). Indeed, let

x = n+ 1 − (a1 + a2 + a3).

Since E(n) = ⊕m≤nF (m) it follows from Prop. 4.7 that the multiplicity of D(a1, a2, a3)
in E(n, 2n) is x(x+ 1)/2. Since

x(x+ 1)

2
= #{(r1, r2, r3)|r1 + r2 + r3 = x− 1}

the claim follows.
Write

Π+|D4(R)×sl(2)+sl(2)+sl(2) = ⊕a1,a2,a3≥0D(a1, a2, a3) ⊗ Va1,a2,a3
.

Taking into account the additional shift by 12, it follows that Z1×Z2×Z3-types of Va1,a2,a3

are
(a2 + a3 + 2r1 + 4, a1 + a3 + 2r2 + 4, a2 + a3 + 2r3 + 4),

and they are one-dimensional. The proposition is proved.

Finally, we consider the case A(R) = G2(R). Let ω1 and ω2 be the fundamental
weights for G2, such that ω1 is the highest weight of the 7-dimensional representation.
Let W (k1, k2) be the irreducible representation of G2(R) with highest weight k1ω1 +k2ω2.

Note that B(R) = Sp6(R), and the reduced root system of H(R) restricts to a root
system of Sp6(R). Also, let U(3,R) be a maximal compact subgroup of Sp6(R) given by

(3.4) U(3,R) = Ksc(R) ∩ Sp6(R).

We identify irreducible representations of U(3,R) with their highest weights l1γ1 + l2γ2 +
l3γ3, (l1 ≥ l2 ≥ l3) with respect to the maximal Cartan subgroup Z1(R)×Z2(R)×Z2(R).
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Theorem 3.5. Consider the dual pair G2(R) × Sp6(R). Then

Π+|G2(R)×sp(6) = ⊕k1,k2≥0W (k1, k2) ⊗ d(k1, k2),

where d(k1, k2) is the irreducible (sp(6), U(3))-module corresponding to the holomorphic

discrete series representation of Sp6(R) with infinitesimal character

(k1 + 2k2 + 3)e1 + (k1 + k2 + 2)e2 + (k2 + 1)e3

and the minimal U(3)-type

(k1 + 2k2 + 4)γ1 + (k1 + k2 + 4)γ2 + (k2 + 4)γ3.

Proof. Write
Π+|G2(R)×sp(6) = ⊕k1,k2≥0W (k1, k2) ⊗ Vk1,k2 .

By [HPS] the infinitesimal character of Vk1,k2 is (k1+2k2+3)e1+(k1+k2+2)e2+(k2+1)e3.
It is Z-admissible, with positive Z-types. Hence it is a direct sum of finitely many unitary
lowest weight modules.

Lemma 3.6. In addition to d(k1, k2) one has the following unitary lowest weight modules

with infinitesimal character (k1 + 2k2 + 3)e1 + (k1 + k2 + 2)e2 + (k2 + 1)e3:

(1) k2 = 0 and k1 6= 0. There is a module with the minimal Z-type 2k1 + 10.
(2) k1 = k2 = 0. There are three modules. Their minimal Z-types are 0, 6 and 10.

Note that the minimal Z-type of d(k1, k2) is 2k1 + 4k2 + 12, hence it is strictly bigger then

the minimal Z-type of any other modules with the same infinitesimal character.

Proof. This follows from the classification of unitary lowest weight modules [EHW].

By Prop. 4.8, W (k1, 0) does not appear in D(a1, a2, a3) unless k1 ≤ a1 + a2 + a3. It
follows from Prop. 4.2 that the minimal Z-type of Vk1,0 is greater then 2k1 +12. It follows
from the lemma that in all cases Vk1,k2 is a finite multiple of d(k1, k2). This implies that
the minimal Z-type of Vk1,k2 is 2k1 + 4k2 + 12, so by Prop. 3.3, if W (k1, k2) is contained
in D(a1, a2, a3), then

a1 + a2 + a3 ≥ k1 + 2k2.

Hence, the multiplicity of

(k2 + 4)γ1 + (k1 + k2 + 4)γ2 + (k1 + 2k2 + 4)γ3,

the lowest weight of the minimal U(3)-type of d(k1, k2) in Vk1,k2 , is equal to the multiplicity
of W (k1, k2) in D(k1 + k2, k2, 0). And this is one by Prop. 4.8. Hence the minimal U(3)-
type appears with multiplicity one and this implies that Vk1,k2

∼= d(k1, k2).

Let d̄(k1, k2) be the contragradient of d(k1, k2). It corresponds to an anti-holomorphic
representation of Sp6(R). Since

(3.7) 1 →< ±1 >→ Sp6(R) → PGSp6(R) → R×/(R×)2 → 1,

there exists unique irreducible discrete series representation D(k1, k2) of PGSp6(R), which
is the unitary completion of

(3.8) d(k1, k2) ⊕ d̄(k1, k2).

This observation gives a proof of the following.
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Corollary 3.9. Let Π̂ be the minimal representation of H(R). Then

Π̂|G(R)×PGSp6(R) = ⊕̂k1,k2≥0W (k1, k2) ⊗D(k1, k2).

The lift

(3.10) W (k1, k2) → D(k1, k2)

is functorial for the inclusion of dual groups G2(C) → Spin7(C). This is shown in [HPS].

4. Branching formulas.

In this section we work out the branching laws used in the previous section. Let
(a1, . . . , an) be the standard coordinates [Bu] for the root system of type Bn, with

(4.1) a1 ≥ . . . ≥ an ≥ 0

a dominant Weyl chamber. Also, let (b1, . . . , bn) be the standard coordinates for the root
system of type Dn, with

(4.2) b1 ≥ . . . ≥ bn−1 ≥ |bn|

a dominant Weyl chamber. Recall that in both cases a dominant weight represents a
highest weight of a finite dimensional representation if the coefficients are in 1

2Z but their
differences are in Z.

4.3 Branching Bn ↓ Dn. Let π(λ) be an irreducible representation of Bn with the highest

weight λ = (a1, . . . , an). Let π(µ) be an irreducible representation of Dn with the highest

weight µ = (b1, . . . , bn). Then the multiplicity of π(µ) in π(λ) is 0 or 1. It is 1 if and only

if ai − bi ∈ Z and

a1 ≥ b1 ≥ a2 ≥ b2 ≥ . . . ≥ an ≥ |bn|.

4.4 Branching Dn ↓ Bn−1. Let π(λ) be an irreducible representation of Dn with the

highest weight λ = (a1, . . . , an). Let π(µ) be an irreducible representation of Bn−1 with

the highest weight µ = (b1, . . . , bn−1). Then the multiplicity of π(µ) in π(λ) is 0 or 1. It

is 1 if and only if ai − bi ∈ Z and

a1 ≥ b1 ≥ a2 ≥ b2 ≥ . . . ≥ bn−1 ≥ |an|.

Let λ be the highest weight of the 26-dimensional representation of F4. Let F (n) be
the irreducible representation with the highest weight nλ.

4.5 Branching F4 ↓ B4. The restriction of F (n) to B4 decomposes with multiplicities 0

or 1. It is 1 only for π(µ) with

µ = (y + x, x, x, x)

and 2x+ y ≤ n.

The branching laws 4.3 and 4.4 are well known, and 4.5 is in [Le; Thm. 8]. This
reference also contains proofs of 4.3 and 4.4.

Recall that D4 has three 8-dimensional representations. Let λi, i = 1, 2, 3, be their
highest weights. Let D(a1, a2, a3) be the irreducible representation with highest weight
a1λ1 + a2λ2 + a3λ3. In terms of (4.2) this highest weight is

(4.6) (a1 +
a2 + a3

2
,
a2 + a3

2
,
a2 + a3

2
,
a2 − a3

2
).
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4.7 Branching F4 ↓ D4. The representation F (n) decomposes as a sum of D(a1, a2, a3)
with multiplicities

(n+ 1) − (a1 + a2 + a3).

Proof. We know that the restriction of F (n) to B4 is a sum of representations with highest
weights

(y + x, x, x, x),

2x + y ≤ n. Restriciting further down to D4 we get a sum of all representations with
highest weights (u1, u2, u3, u4) such that

y + x ≥ u1 ≥ x ≥ u2 ≥ x ≥ u3 ≥ x ≥ |u4|.

It follows that u2 = u3 = x and the representation can be written as

D(u1 − x, x− u4, x+ u4),

by (4.6). Now

D(u1 − x, x− u4, x+ u4) = D(a1, a2, a3)

implies that 2x = a2 + a3 and u1 = a1 + x. Since y + x ≥ u1, we have y ≥ a1. Hence
the multiplicity of D(a1, a2, a3) in F (n) is the number of integers y such that y ≥ a1 and
y + a2 + a3 ≤ n. Clearly, this number is (n+ 1) − (a1 + a2 + a3).

Proposition 4.8.

(1) The multiplicity of W (k1, k2) in D(k1 + k2, k2, 0) is 1.
(2) The multiplicity of W (k1, 0) in D(a1, a2, a3), is 0 unless a1 + a2 + a3 ≥ k1.

Proof. Let µ1, µ2 and µ3 be the fundamental weights for B3 such that µ1 is the highest
weight of the standard 7-dimensional representation and µ3 is the highest weight of the
8-dimensional spin-representation. Let B(m1, m2, m3) be the irreducible representation
with highest weight m1µ1 +m2µ2 +m3µ3. In terms of (4.1), this highest weight is

(m1 +m2 +
m3

2
, m2 +

m3

2
,
m3

2
).

Lemma 4.9.

(1) The multiplicity of W (k1, k2) in B(j, 0, k2), j ≤ k1 + k2, is 0 or 1. It is 1 precisely

when j = k1 + k2.

(2) The multiplicity of W (k1, 0) in B(m1, m2, m3), is 0 or 1. It is 1 precisely when

m1 +m2 +m3 ≥ k1 ≥ m1 +m2.
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Proof. These are two easy, special cases of the formula given by Mc Govern, [MG; Thm.
3.4].

By (4.6) the highest weight of D(k1 + k2, k2, 0) is

(k1 + k2 +
k2

2
,
k2

2
,
k2

2
,
k2

2
).

The branching D4 ↓ B3 implies that D(k1 + k2, k2, 0) decomposes as a sum of representa-
tions with highest weights

(j +
k2

2
,
k2

2
,
k2

2
)

with j ≤ k1 + k2. These are B(j, 0, k2) with j ≤ k1 + k2. The first statement follows from
the lemma.

Since the highest weight of D(a1, a2, a3) is given by (4.6), the restricition to B3 consists
of representations with highest weights (x, y, z) such that

a1 +
a2 + a3

2
≥ x ≥

a2 + a3

2
≥ y ≥

a2 + a3

2
≥ z ≥

a2 − a3

2

It follows that y = (a2 + a3)/2 and these are the representations:

B(x−
a2 + a3

2
,
a2 + a3

2
− z, 2z).

The lemma implies that k1 ≤ x+ z, and since x+ z ≤ a1 + a2 + a3, the second statement
follows. The proposition is proved.

IV p-adic correspondences

Our goal in this chapter is to understand the restriction of the minimal representation
Π of H(Qp) to the closed subgroup G(Qp) ×G′(Qp).

The minimal representation of a split, adjoint group H(Qp) of type Dn or En is an
unramified representation whose Satake parameter is

(0.1) smin = ϕ

(

p
1
2 0

0 p−
1
2

)

,

where ϕ is a map

(0.2) ϕ : SL2(C) → Ĥ(C)

corresponding to the subregular unipotent orbit in Ĥ(C) = Hsc(C). The representation Π
restricts to the irreducible representation of Hsc(Qp) constructed by Kazhdan and Savin
in [KS]. On the space of Iwahori-fixed vectors in Π, the Iwahori-Hecke algebra of Hsc(Qp)
acts via the reflection representation [Lu].



28 B. H. GROSS AND G. SAVIN

1. Parameters.

In this section, we give a conjectural decription of the irreducible representations π⊗π′

of G(Qp) × G′(Qp) which occur as quotients of Π. This description is given in terms of
the Langlands-Deligne-Lusztig-Vogan parametrization of irreducible representations, us-
ing admissible homomorphisms from Weil-Deligne group of Qp to the dual group. Even
though this parametrization is still conjectural, in the next section we derive some impli-
cations which can be stated independently of the parametrization. We check some of this
implications in Section 3.

We first review the parametrization, for G any semi-simple, split group of adjoint type
over Qp. Let Ĝ be the Langlands dual group, so Ĝ(C) is semi-simple and simply-connected
complex Lie group. The conjectural parameter of an irreducible, admissible, complex
representation of G(Qp). is a pair (ϕ, χ), where

(1.1) ϕ : W ′ → Ĝ(C)

is an admissible homomorphism of the Weil-Deligne group W ′ of Qp [B1], and χ is an
irreducible complex representation of a finite group Bϕ associated to ϕ.

We recall that ϕ is a continuous homomorphism of the Weil group W taking Frobenius
elements to a semi-simple class, together with a nilpotent element N in ĝ, the Lie algebra
of Ĝ(C), with Ad(w)(N) = ||w|| N. By the Jacobson-Morozov theorem, giving a parameter
ϕ as in (1.1) is equivalent to giving a continuous, semi-simple representation

(1.2) η : W × SL2(C) → Ĝ(C)

with

(1.3)















ϕ(w) = η(w,

(

||w||1/2 0

0 ||w||−1/2

)

)

exp(N) = η(1,

(

1 1

0 1

)

)

Associated to ϕ, we have the finite group

(1.4) Aϕ = π0(Cent(η))

where Cent(η) is the algebraic subgroup of Ĝ which centralizes the image of η and π0

donotes the corresponding group of connected components. If Z(Ĝ) is the center of Ĝ, the

inclusion Z(Ĝ) ⊆ Cent(ϕ) induces a map (not necessarily injective)

(1.5) Z(Ĝ) → Aϕ.

The image is a normal subgroup, and we define Bϕ as the quotient. Then an irreducible
representation π of G(Qp) should correspond to a pair (ϕ, χ), where χ is an irreducible
representation of Bϕ.

If G = G2(Qp), then Ĝ(C) = G2(C), and Aϕ = Bϕ. If G′ = PGSp6(Qp), then

Ĝ′(C) = Spin7(C) and Bϕ′ is the quotient by the image of −1. The possible finite groups
which arise are given by the following. Let µk denote the cyclic group of kth roots of 1,
and Sk the symmetric group on k letters.
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Proposition 1.6.

(1) If ϕ : W ′ → G2(C) is a parameter for G = G2, then the group Bϕ is isomorphic

to µ3, S3, or µk2 , with 0 ≤ k ≤ 3.
(2) If ϕ′ : W ′ → Spin7(C) is a parameter for G′ = PGSp6 then the group Bϕ′ is

isomorphic to µk2 , with 0 ≤ k ≤ 3. If a is the number of distinct orthogonal repre-

sentations in the decomposition of the semi-simple W × SL2(C)-module V = C7,

and b is the dimension of the subspace of Hom(W,±1) spanned by the determinants

of the orthogonal summands in V, then k = a− b− 1.

Proof.

1) Examples of subgroups Im(η) of G2(C) with the given groups Bϕ are given by the
following table:

Im(η) Bϕ
G2 1
SL3 µ3

SO3 S3

SO4 µ2

To < ±1 > µ2
2

T2o < ±1 > µ3
2

Here T ∼= GL2
1 is a maximal torus, T2 the subgroup of T killed by 2, and −1 the central

element in the Weyl group of T . The latter case (T2o < ±1 >∼= µ3
2) can only be the image

of η when p = 2. This list exhausts the possible groups Bϕ, as we will see in the proof of
Proposition 1.10.

2) Examples of subgroups Im(η′) of Spin7(C) with the given groups Bϕ are given by the
following table:

Im(η′) Aϕ′ Bϕ′

Spin7 < ±1 > 1
Spin6 = SL4 µ4 µ2

T ′o < ±1 > µ3
2 µ2

2

T ′
2o < ±1 > µ4

2 µ3
2

Again, T ′ ∼= GL3
1 is a maximal torus, T ′

2 the subgroup of T ′ killed by 2, and −1 the central
element in the Weyl group of T ′. The last case (T ′

2o < ±1 >∼= µ4
2) can only be the image

of η′ when p = 2.

To see that these are the only possibilities for Bϕ′ , and to verify the formula for k, we
note that the representation V gives a parameter for Sp6:

ϕ̄′ : W ′ → Spin7(C) → SO7(C).

We can compute the component group Aϕ̄′ using the results in [GP; Cor. 7.7], and find
that

Aϕ̄′ = Bϕ̄′
∼= µa−1

2



30 B. H. GROSS AND G. SAVIN

where a is the number of distinct orhogonal summands in the semi-simple representation
V . But we have an exact sequence [GP; pg 983]

1 → Bϕ′ → Bϕ̄′ → Hom(W,±1)

x 7→ det(Vx=−1)

so k = a− b− 1 as claimed.

Now let

(1.7) f : Ĝ(C) = G2(C) → Ĝ′(C) = Spin7(C)

be the inclusion, well defined up to conjugacy, that realizesG2 as the fixer of a non-isotropic
line in the 8-dimensional spin representation of Spin7. If ϕ is a parameter for G, then

(1.8) ϕ′ = f ◦ ϕ

is a parmeter for G′. Moreover, f induces a map fϕ : Aϕ → Aϕ′ . Since Aϕ = Bϕ and Bϕ′

is the quotient of Aϕ′ by the image of −1, we get an induced map

(1.9) fϕ : Bϕ → Bϕ′

Proposition 1.10. The map fϕ (1.9 ) is surjective, with kernel the Sylow 3-subgroup of

Bϕ (either 1 or µ3 ).

Proof. In the absence of the intelligent argument, we can prove this in a case by case
manner, considering the connected component of the image of η in G2(C), which is a
reductive subroup C. Considering possible normalizers of C, and their action on V, we
can compare Bϕ with Bϕ′ computed in Proposition 1.6.

For example, assume that C has rank 2, i.e. it contains the maximal torus T . Then C
is determined by its root system which is contained in the root system of G2. Hence the
possibilities for C are G2, SL3, SO4, GL2,s, GL2,l, and T , where SL3 is spanned by long
roots,

SO4 = SL2,s × SL2,l/∆ < ±1 >

is a group spanned by a pair of perpendicular roots, one short and one long, and GL2,s and
GL2,l are Levi factors of maximal parabolic subgroups of G2. The corresponding groups
Bϕ and Bϕ′ are
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Im(η) Bϕ Bϕ′

G2 1 1
SO4 µ2 µ2

N(SL3) 1 1
SL3 µ3 1

N(GL2,s) µ2 µ2

GL2,s 1 1
N(GL2,l) µ2 µ2

GL2,l 1 1
N(T ) 1 1
T o S3 µ3 1

T o (2, 2) µ2 µ2

T o µ6 1 1
T o µ3 µ3 1

To < ±1 > µ2
2 µ2

2

T o (2)s µ2 µ2

T o (2)s µ2 µ2

T 1 1

We leave the analysis when the connected component of the image of η has rank 1 or 0 to
the reader to check. The group Bϕ = S3 arises only when the image is SO3 ⊂ SL3 ⊂ G2.
In this case V = 2C3 ⊕ C where C3 is the standard representation of SO3. In particular,
it is an orthogonal representation of W of determinant 1. Hence, Bϕ′ = µ2, and the map
S3 → µ2 is the sign character.

If ϕ is a parameter for G and ϕ′ = f ◦ ϕ, by Proposition 1.10 we have a surjective map

(1.11) fϕ : Bϕ → Bϕ′
∼= µk2 .

If χ′ is an irreducible representation of Bϕ′ (i.e. a quadratic character), we obtain a
quadratic character

(1.12) χ = χ′ ◦ fϕ of Bϕ.

We can now state the conjecture on the restriction of Π.

Conjecture 1.13. Let Π be the minimal representation of H(Qp). The representation

π ⊗ π′ = π(ϕ, χ) ⊗ π′(ϕ′, χ)

of G(Qp) ×G′(Qp) is a quotient of Π if and only if

ϕ′ =f ◦ ϕ

χ =χ′ ◦ fϕ.

In this case HomG×G′(Π, π ⊗ π′) has dimension 1.
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2. Some consequences.

Let π be an irreducible representation of G(Qp) and π′ an irreducible representation of
G′(Qp). Define

(2.1) Θ(π)

to be the set of equivalence classes of irreducible representations σ′ of G′(Qp) such that
π ⊗ σ′ is a quotient of Π. Similarly, define

(2.2) Θ(π′)

to be the set of equivalence classes of irreducible representations σ of G(Qp) such that
σ ⊗ π′ is a quotient of Π. The conjecture 1.14 implies

Conjecture 2.3.

(1) Card Θ(π) ≤ 1, with equality if the character χ of Bϕ is quadratic.

(2) Card Θ(π′) ≤ 1, with equality if the parameter ϕ′ has image in the subgroup G2(C)
of Spin7(C).

We write

(2.4) π ↔ π′

and say that π corresponds to π′ if

(2.5) Θ(π(ϕ)) = {π(ϕ′)} and Θ(π(ϕ)) = {π(ϕ′)}.

In particular, π ⊗ π′ is a quotient of Π.
Recall that for each semi-simple conjugacy class s in G2(C), there is an unramified

representation π(s) of G(Qp) with Satake parameter s. Similarly, if s′ is a semi-simple
conjugacy class in Spin7(C), there is an unramified representation π(s′) of G′(Qp) with
Satake parameter s′.

Conjecture 2.5.

(1) If s′ = f(s), then π(s) ↔ π(s′). In particular, the trivial representation 1 of G
corresponds to the trivial representation 1′ of G′.

(2) Card Θ(π(s′)) = 0 unless s′ = f(s) for some s.
(3) The Steinberg representation St of G corresponds to the Steinberg representation

St′ of G′.

These predictions follow immediately from Conjecture 1.13. For (1) we note that the

parameter of π(s) is a homomorphism ϕ : W ′ → Ĝ(C) with N = 0, ϕ trivial on the inertia
subgroup and ϕ(Frobp) = s. This has Bϕ = 1, so χ = 1. It follows that ϕ′ is a the
parameter of π(s′).

The Satake parameter of the trivial representation is ρ̌(p) where ρ̌ is the co-character
given by half the sum of positive co-roots. Since the image of the principal SL2 in G2

under the map f : G2 → Spin7 is the principal SL2 in Spin7, we have f ◦ ρ̌ = ρ̌′. Hence
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the trivial representation 1 of G should correspond to the trivial representation 1′ of G′.
The same argument shows that the Steinberg representations should correspond, as those
parameters factor through the principal SL2.

The part (1) is true for tempered representations (recall that the representation π(s) is
tempered if s lies in a maximal compact subgroup). This is shown in [MS]. In the next
section we show that 1 ↔ 1′, and we verify (2). We also obtain a partial verification of
(3). For example, we show that Θ(St′) ⊆ {St}.

3. Some calculations.

We first prove a statement slightly stronger then Conj. 2.5 (2):

Proposition 3.1. Let π(s′) be an unramified representation of G′(Qp). If π(s′) is a

quotient of Π, then s′ = f(s) for some s in G2(C).

We note that every unramified representation π′ can be realized as a submodule

(3.2) π′ ⊆ IndG
′

Q̄ σ̄

for some unramified representation σ̄ of GL3. Here Q̄ = LŪ , L ∼= GL3, is the maximal
parabolic subgroup of G′, opposite to Q, defined in (3.20), Chapter II. Let

(3.3) s̄ = |p|





z1 0 0
0 z2 0
0 0 z3



 in ĜL3(C) = GL3(C)

be the Satake parameter of σ̄. Here | · | is a norm on Qp, such that |p| = 1/p. The factor |p|
enters through the normalization of the parabolic induction. The corresponding modular
function ρŪ of GL3 is

(3.4) ρŪ = | det |.

So if π′ is contained in IndG
′

Q̄ σ̄, then the Satake parameter of π′ is

(3.5) s′ = s̄|p|−1 in GL3(C) ⊂ Spin7(C).

The 8-dimensional spin representation of Spin7 restrict to GL3(C) as

(3.6) det⊕ C3 ⊕ (C3)∗ ⊕ (det)∗,

where C3 is the standard representatio of GL3(C), and ∗ denotes dual representations.
Hence the parameter s′ fixes a vector in the spin representation (so s′ = f(s) for some s
in G2(C)) if

(3.7) z1z2z3 = 1 or zi = 1 for some i.

By the Frobenius reciprocity,

(3.8) HomG′(Π, IndG
′

Q̄ σ̄) = HomGL3
(ΠŪ , σ̄)
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it suffices to determine which representations of GL3 appear as a quotient of ΠŪ , the
maximal Ū -invariant quotient of Π.

To describe ΠŪ we need some notation. Let Q1 and Q2 be the two non-conjugated
maximal parabolic subgroups of GL3 intersecting in the group of lower triangular 3 × 3
matrices, with Levi factors GL1 ×GL2 and GL2 ×GL1 respectively. Then

(3.9) ρ′1(g1, g2) = |g1|
−1| det g2|

1/2 and ρ′2(g2, g1) = | det g2|
−1/2|g1|

are their modular characters.
Maximal parabolic subgroups of G(Qp) can be defined as stabilizers of non-trivial nil

subalgebras of Op = O ⊗ Qp. A nil subalgebra is a subspace of Op consisting of traceless
elements with trivial multiplication (i.e. the product of any two elements is 0). The
possible dimensions are 1 and 2. Fix V1 ⊂ V2, a pair of nil-subalgebras. Then P1 and
P2, the stabilizers of V1 and V2, are two non-conjugated maximal parabolic subgroups of
G, with P1 ∩ P2 a Borel subgroup. In particular, Pr has a quotient GLr = GL(Vr). For
P2, this quotient is isomorphic to the Levi factor. The Levi factor of P1 is isomorphic to
GL2 = GL(V3/V1), where

(3.10) V3 = {x ∈ O | x̄ = −x, and xV1 = 0}.

The action of GL2, the Levi factor of P1, on V1 is given by det. The respective modular
characters are

(3.11) ρ1 = | det |5/2 and ρ2 = | det |3/2.

We fix the above identifications, in particular, Pr ×Qr, r = 1, 2, has a quotient isomor-
phic to

(3.12) GLr ×GLr.

Proposition 3.13. [MS; Thm. 5.3] The G×GL3-module ΠŪ has a filtration

0 = V0 ⊂ V1 ⊂ V2 ⊂ V3 = ΠŪ

such that

(1)

V1/V0
∼= indG×GL3

P2×Q2
(C∞

c (GL2)) ⊗ | det |2

(2)

V2/V1
∼= indG×GL3

P1×Q1
(C∞

c (GL1)) ⊗ | det |2

(3)
V3/V2 = ΠN̄

∼= Π(M) ⊗ | det | ⊕ 1 ⊗ | det |2

Here C∞
c (GLi) denotes the space of locally constant, compactly supported functions on

GLr, r = 1, 2. In both cases, Pr ×Qr acts through the quotient isomorphic to GLr ×GLr.
In (3 ), Π(M) is the minimal representation of M (the center of M , which coincides with

the center of GL3, acts trivially on Π(M)).
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Corollary 3.14. The possible Satake parameters of unramified GL3-quotients of Vi/Vi−1

are:

(1) |p|(z1, z2, 1) if i = 1.
(2) |p|(z1, |p|, 1) if i = 2.
(3) |p|(z1, z2, z3) with z1z2z3 = 1, or |p|(|p|2, |p|, 1) if i = 3. The latter is the parameter

of | det |2.

Proposition 3.1 follows from Corollary 3.14.
Let π be an irreducible representation of G and π′ an irreducible representation of G′.

We now explain how Proposition 3.13 can be used to obtain an upper bound on Θ(π′) and
a lower bound on Θ(π).

Assume that π′ is a submodule of IndG
′

Q̄ (σ̄), where σ̄ is a representation of GL3. If σ is

in Θ(π′), then by the Frobenius reciprocity

(3.15) HomG×G′(Π, σ ⊗ IndG
′

Q̄ (σ̄)) ∼= HomG×GL3
(ΠŪ , σ ⊗ σ̄),

σ⊗ σ̄ is a quotient of ΠŪ . Hence, if we can determine all representations σ of G such that
σ ⊗ σ̄ is a quotient of ΠŪ , then we have an upper bound on Θ(π′). Conversly, if π ⊗ σ̄ is
a a quotient of ΠŪ , for some σ̄, then Θ(π) is not empty, for it contains a subquotient of

IndG
′

Q̄ (σ̄) by (3.15).
To illustrate this principle, we prove

Proposition 3.16. 1 ↔ 1′.

Proof. We first prove the following lemma.

Lemma 3.17.

(1) Θ(1) is not empty.

(2) Θ(1′) ⊆ {1}.

Proof. By Proposition 3.13, 1 ⊗ | det |2 is a quotient of ΠŪ . Hence by (3.15) Θ(1) is not
empty. On the other hand,

1′ ⊂ IndG
′

Q̄ 1̄

where 1̄ is the trivial representation of GL3. Its Satake parameter is





|p|−1 0 0
0 1 0
0 0 |p|



 = |p|





|p|−2 0 0
0 |p|−1 0
0 0 1



 .

Comparing with Corollary 3.14, we see that σ ⊗ 1̄ can be only a quotient of

V1/V0 = indG×GL3

P2×Q2
(C∞

c (GL2)) ⊗ | det |2.

Since C∞
c (GL2) is the regular representation of GL2, σ ⊗ | det |−2 is a quotient of

IndGP2
(τ) ⊗ IndGL3

Q2
(τ∗)
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for some irreducible representation τ of GL2. This implies that τ∗ = | det |−3. Hence
τ = | det |3 = ρ2

2. Since 1 is unique quotient of

IndGP2
(ρ2

2)

it follows that σ ∼= 1. The lemma is proved.

Let Ū2 be the unipotent radical of P̄2, the maximal parabolic of G, opposite to P2. Since
ΠŪ2

is given by [MS; Thm. 7.6], we can prove a statement complementary to Lemma 3.17:

Lemma 3.18.

(1) Θ(1′) is not empty.

(2) Θ(1) ⊆ {1′}.

The two lemmas combined imply the proposition.

We finish this section with a discussion on Steinberg representations.

Proposition 3.19. Θ(St′) ⊆ {St}.

Proof. The representation St′ is unique submodule of

IndG
′

Q̄ (S̄t⊗ | det |2)

where S̄t is the Steinberg representation of GL3. Again, if σ ⊗ St′ is a quotient of Π,
then by (3.15) σ ⊗ (S̄t ⊗ | det |2) is a quotient of ΠŪ . However, it can not be a quotient
of V3/V2, because the central character of (S̄t⊗ | det |2) is | · |6, and the central character
of ΠM ⊗ | det |2 is | · |3. Also, it can not be a quotient of V2/V1, because the Steinberg
representation is generic. Hence σ ⊗ (S̄t⊗ | det |2) must be a quotient of V1/V0. So as in
the proof of Lemma 3.17, σ ⊗ S̄t must be a quotient of

IndGP2
(τ) ⊗ IndGL3

Q2
(τ∗)

for an irreducible representation τ of GL2. It follows that τ∗ is the Steinberg representation
of GL2. Hence τ is also the Steinberg representation. Since St is unique quotent of

IndGP2
(τ),

the proposition follows.

Again, in the same fashion using ΠŪ2
, we can prove that if π′ is a unitarizable Θ-lift of

St then

(3.20) π′ ∼= St′.

As we shall see in the next chapter, the Θ-lift of a form in A(StS), (S not empty) will be
cuspidal, hence all its local components must be unitarizable. So (3.20) implies that the
lift is Steinberg at all places in S.
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V Global correspondences

Let H be the adjoint goup of type E7, defined and of rank three over Q. Kim [Ki] has
constructed a square-integrable modular form on the exceptional hermitian domain which
gives an automorphic realization

(0.1) θ : ⊗pΠp → L2(H(Q)\H(A))

where Πp is the minimal representation of H(Qp), and Π∞ is the space of K-finte vectors

in the irreducible unitary representation Π̂ of H(R), studied in Chapter III.
In view of the local results, it is of great interest to study the lift of automorphic forms

from G to G′ via the kernel constructed by Kim. Let θ = θ(⊗pfp) for some ⊗pfp ∈ ⊗pΠp.
Let π be an automorphic representation of G = Aut(O). Let α be a form in π. Define β,
a holomorphic form on G′ by

(0.2) β(g′) =

∫

G(Q)\G(A)

θ(gg′)α(g)dg.

The integral converges, because we are integrating two smooth functions over a compact
set.

Let π′ be a cuspidal automorphic representation of G′. We say that π′ is a Θ lift of π if

(0.3)

∫

G′(Q)\G′(A)

α′(g′)β(g′)dg′

is not zero for some α and α′ in π′. The integral (0.3) converges because α′ is rapidly
decreasing at cusps, and β is of moderate growth. Hence (0.2) and (0.3) define a linear
functional on

(0.4) Π ⊗ π ⊗ π′.

If this functional is not trivial, then local components of π and π′ are related by the local
correspondences studied in Chapters III and IV.

The existence of π′ depends on the affirmative answer to these two questions:

(1) Under which conditions is the form β cuspidal?
(2) Under which conditions is the form β non-zero?

To answer these questions we study the Fourier expansion of β along the unipotent rad-
ical U of the Siegel parabolic subgroup of G′ = PGSp6. Note that the Fourier coefficients
are parametrized by ternary quadratic forms. The holomorphic form β is cuspidal, if the
Fourier coefficients corresponding to degenerate forms are zero [An; pg 78]. We show that
β is cuspidal if a local component of π is generic, i.e. it admits a non-zero Whittaker
functional. For example, if π corresponds to a modular form in A(ǫp), (5.3) in Chapter I,
then the local component at the place p has a non-zero Whittaker functional. This gives a
fairly satisfactory answer to (1). On the other hand, L(Q)-conjugacy classes (L is the Levi
factor of the Siegel parabolic) of non-degenerate Fourier coefficients are parametrized by
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quaternion algebras. Let D be a quaternion subalgebra of O (the class of Fourier coeffi-
cients is zero if D⊗R is not definite). Let C be the centralizer in G of D. It is isomorphic
to the group of norm one elements in D. Then we show that the Fourier coefficient of β in
the conjugacy class parametrized by D is non-zero if and only if the integral of the form
α over C is non-zero.

This result has a striking similarity to the following well known classical result [Shn]
and [Wa]: Let PD× be the automorphism group of D. Then one has a dual pair

PD× × SL2 ⊂ Sp6,

and one can use the Weil representation of S̃p6 to lift automorphic forms from PD× to

S̃L2. The conjugacy classes of non-degenerate Fourier coefficients on S̃L2 are parametrized
by quadratic algebras. Let K be a quadratic subalgebra of D. Fix an automorphic form
on PD×. The Fourier coefficients (the conjugacy class parametrized by K) of the lift are
non-zero if and only if the integral of the form over the centralizer in PD× of K is non-zero.
Again, the class of Fourier coefficients is zero if K can not be embedded into D.

We finish this chapter by showing that the two modular forms for G constructed in
Chapter I lift non-trivially to G′.

1. Kim’s form.

In this section we recall few results from [Ki]. Let O∞ = O⊗R and let J+
O∞

be the cone

of positive definite matrices in JO∞
. The exceptional symmetric domain D+ is the set

(1.1) D+ = {Z = X + iY | X in JO∞
and Y in J+

O∞
}.

The group of holomorphic transformation of D+ is isomorphic to Hsc(R)/ < ±1 >, the
connected component of H(R).

Let f0
∞ be a non-zero vector in the one-dimensional minimal K-type in Π+

∞, and let f0
p

(p is a finite prime) be the spherical vector in Πp. Kim has constructed a modular form F
on D+ of weight 4 and level 0, which corresponds to θ(⊗pf

0
p ). Moreover, he has obtained

a Fourier series decomposition

(1.2) F (Z) = 1 + 240
∑

T∈JR

aT e2πi Tr(T◦Z)

where JR is the set of A in JO with entries in R. A coefficient aT is zero unless the rank
of T is 1, and it is in the closure of the cone J+

O∞
. In this case,

(1.3) aT =
∑

d|c(T )

d3,

where c(T ) is the largest integer such that c(T )−1T is in JR. In particular, aT > 0.

2. Local theory.

In this section all objects are over Qp. As in Chapter II, Section 3, let P = MN be the
maximal parabolic subgroup of H such that M is the group of isogenies of the determinant
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form on the exceptional Jordan algebra JOp
, and N ∼= JOp

as an M -module. Let λ be the
isogeny character of M defined by (3.5) in Chapter II.

Let ψ be a non-trivial character of Qp. Let A be an element in JOp
. Define a character

ψA of N by

(2.1) ψA(B) = ψ(Tr(A ◦B))

where B ∈ JOp
∼= N . A non-zero element A in JOp

has rank 1 if

(2.2) A2 = Tr(A)A.

Let Ω be the set of elements of rank 1. We wil need the following result [MS; Thm. 1.1]:

Proposition 2.3. The minimal representation Π of H fits into the sequence of P -modules

C∞
c (Ω) ⊂ Π ⊂ C∞(Ω),

where C∞(Ω) denotes the space of locally constant functions on Ω and C∞
c (Ω) is the

subspace of compactly supported functions. Moroever,

(1) if f ∈ C∞(Ω), then

{

Π(n)f(X) = ψX(n)f(X), n ∈ N ∼= JOp

Π(m)f(X) = |λ(m)|2f((m̃(X)), m ∈M,

where m̃(X) is defined by

Tr(m̃(X) ◦ Y ) = Tr(X ◦m(Y )),

for all Y in JOp
.

(2)

Π/C∞
c (Ω) = ΠN ,

where ΠN is the maximal N -invariant quotient of Π.

Let (π,E) be a smoothN -module. Define EN,ψA
to be the quotient of E by the subspace

E(N,ψA) spanned by the elements {π(n)v − ψA(n)v | n ∈ N, v ∈ E}. Since the functor
E  E(N,ψA) is exact [BZ], Prop. 2.3 implies the following:

Corollary 2.4. Let A be a non-zero element in JO. Then

dim ΠN,ψA
≤ 1.

It is 1 if and only if the rank of A is 1. In this case, the dual of ΠN,ψA
is spanned by

“evaluation at A”.
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3. Fourier coefficients.

Fix ψ, a non-trivial character of A/Q, with conductor
∏

p Zp. Let A ∈ JQ. As in the

previous section we define a character ψA of N(A).
For a function θ = θ(⊗pfp), define the Fourier coefficient θA by

(3.1) θA(g) =

∫

N(Q)\N(A)

θ(ng)ψA(n)dn.

Corollary 2.3 implies that θA(g) = 0 if A has rank > 1.
We consider the Fourier expansion of β defined by (0.2) along U , the unipotent radical

of the Siegel parabolic of G′. We identify U(Q) with the set of 3 × 3 symmetric matrices
with coefficients in Q. Let B be an element in U(Q). Then

(3.2) βB(1) =

∫

U(Q)\U(A)

∫

G(Q)\G(A)

θ(ug)α(g)ψB(u)dgdu.

Write θ(g) =
∑

rkA≤1 θA(g) and substitute into the formula for βB(1). Then

(3.3) βB(1) =

∫

G(Q)\G(A)

∑

ψA|U(A)=ψ
−1
B

θA(g)α(g)dg.

Lemma 3.4. The group G(Q) acts transitively on the set of all rank-one elements A in

JO
∼= N(Q) such that

ψA|U(A) = ψ−1
B .

Proof. After conjugating B with an element in L(Q) ∼= GL3(Q), we can assume that B is
given by a diagonal matrix:

B =





a 0 0
0 b 0
0 0 c



 .

Let

A =





d z̄ y
z e x̄
ȳ x f





such that ψA|U = ψ−1
B . Then

d = −a, e = −b, f = −c
x = −x, y = −y, z = −z.

Since A is rank-one, we have A2 = Tr(A)A and this implies

x2 = −bc, y2 = −ca, z2 = −ab
yz = −ax, zx = −by, xy = −cz.
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We have four cases:

(1) a = b = c = 0. Then x2 = y2 = z2 = 0. Since O is a division algebra, this implies
that x = y = z = 0. Hence A = 0 is the only possibility.

(2) a 6= 0, b = c = 0. Then again x2 = y2 = z2 = 0, and A = −B is the only possibility.
(3) ab 6= 0 but c = 0. Then x2 = y2 = 0. Therefore x = y = 0. Since z2 = −ab,

K = Q(z) is a quadratic subalgebra of O. By a theorem of Jacobson [J3], G(Q)
acts transitively on the set of traceless z such that z2 = −ab. The stabilizer of
a point is isomorphic to SU(K⊥) = SUK3 . This form of SL3 is compact over R,
quasi-split for all finite primes, and split by K.

(4) abc 6= 0. In this case x, y and z are standard generators of a quaternion subalgebra
D of O. By a theorem of Jacobson [J3], G(Q) acts transitively on the set of triples
(x, y, z). The stabilizer of a point is isomorphic to the group of norm one elements
in D.

Finally, note that A will exist only if B is a semi-definite matrix. The lemma is proved.

Assume that B = 0. The lemma implies that

(3.5) β0(1) =

∫

G(Q)\G(A)

θ0(g)α(g)dg.

Since θ0(1) = θ0(m) for any m ∈ [M(A),M(A)] (the Fourier coefficient a0 is constant in
the Kim’s formula), and G(A) ⊂ [M(A),M(A)],

(3.6) β0(1) = θ0(1)

∫

G(Q)\G(A)

α(g)dg.

Remark: Ginzburg, Rallis, and Soudry have constructed in [GRS1] an automorphic rep-
resentation of the split group E7,7(A), whose local components are the minimal rep-
resentations. Moreover, they have shown that the constant term along the unipotent
radical of the E6,6-maximal parabolic is a sum of two automorphic representations of
[M(A),M(A)] = E6,6(A): the trivial representation, and a representation whose local
components are the minimal representations. In the case of E7,3(A), the latter summand
can not appear, because the local component E6,2(R) of [M(A),M(A)] has no minimal
representation.

Now assume that B 6= 0. Fix A′, a representative of the orbit. Since A′ and nA′ (n ∈ Z)
are in the same L(Q)-orbit, we shall assume that the entries of A′ lie in R, the maximal
order of O. Let A be the composition algebra generated by the entries of A′. Let

(3.7) C(Q) = CG(Q)(A).

Then

(3.8) βB(1) =

∫

C(Q)\G(A)

θA′(g)α(g)dg.

Recall that θ = θ(⊗pfp) and we fix f∞. The map

(3.9) θ 7→ θA′(1)
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defines a linear functional on Cf∞ ⊗ (⊗p6=∞Πp) which by the local uniqueness (Cor. 2.3)
must be a product of local functionals, i.e. evaluations at A′. Therefore, there exists a
non-zero constant c such that

(3.10) θA′(1) = c
∏

p6=∞

fp(A
′).

We have to say a word or two about the above “infinite” product. Let f0
p ∈ Πp be the

spherical vector. Note that f0
p (A′) 6= 0. This follows from the Kim’s formula, which says

that θA′(1) 6= 0 if fp = f0
p for all p, and the coefficients of A′ are in R. We normalize f0

p

so that f0
p (A′) = 1, hence the above product is always just a finite product.

Let g = g∞gf be an element in G(A), where g∞ is in G(R) and gf in G(Q̂). Arguing
as before,

(3.11) θA′(g) = c(g∞)
∏

p6=∞

fp(g
−1
p (A′)),

where c(g∞) is a constant depending on g∞. It follows that θA′(g) is C(Q̂)-left invariant.

Since it is also C(Q)-invariant, and C(Q)C(Q̂) is dense in C(A) by the weak approximation
[Kn], it follows that θA′(g) is C(A)-left invariant. Hence, from (3.8)

(3.12) βB(1) =

∫

C(A)\G(A)

θA′(g)PCα (g)dg,

where

(3.13) PCα (g) =

∫

C(Q)\C(A)

α(vg)dv.

4. Non-vanishing and cuspidality.

We first give a criterion for non-vanishing of non-degenerate Fourier coefficients. Every
3 × 3 symmetric is L(Q)-conjugated to a diagonal matrix. Let

(4.1) B =





a 0 0
0 b 0
0 0 c



 in U(Q)

be of rank three, i.e. abc 6= 0. Let D be a quaternion algebra spanned by 1 and traceless
x, y, and z, subject to the following relations:

(4.2)
x2 = −bc, y2 = −ca, z2 = −ab
yz = −ax, zx = −by, xy = −cz.

Replacing B with another diagonal matrix in the same conjugacy class amounts to rescal-
ing and permuting the generators x, y and z. In particular, generic L(Q)-orbits are
parametrized by quaternion algebras.
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Henceforth, we assume that D is contained in O (this is possible iff B is a definite
matrix). In particular, x, y and z are traceless octonions. Then

(4.3) A′ = −





a z ȳ
z̄ b x
y x̄ c





is a rank one matrix in JO such that ψA′ |U = ψ−1
B . Again, there is no harm in assuming

that the entries of A′ are in R, the maximal order in O.
Let π be an automorphic representation of G. Fix a form α in π. Let S be a set of

finite places such that if p /∈ S, then

(4.4)











α is G(Zp) − invariant

Dp is the algebra of 2 × 2 matrices

a, b, c are not divisible by p.

Proposition 4.5. Let C be the centralizer of D in G. Then the following are equivalent:

(1) PCα 6= 0, and

(2) βB(1) 6= 0 for a choice of θ = θ(⊗pfp), with fp = f0
p for all p /∈ S.

In particular, if PCα 6= 0, then β is unramified for all p /∈ S.

Proof. Obviously, if PCα = 0 then βB(1) = 0 for any choice of θ, by (3.12). Assume that
PCα 6= 0, and let θ0 = θ(⊗pfp), such that

(1) f∞ = f0
∞, a vector in the minimal “K-type” of Π+

∞.
(2) If p /∈ S, then fp = f0

p (H(Zp)-invariant vector).

Lemma 4.6. Let QS =
∏

p∈S Qp. If g ∈ G(A), we write g = g∞gSg
S where g∞ ∈ G(R),

gS ∈ G(QS) and gS ∈
∏

p/∈S G(Qp). Then there exists a non-zero constant c, such that for

every g ∈ G(A)

θ0
A′(g) = c fS(g−1

S (A′))
∏

p/∈S

χp(gp)

where fS = ⊗p∈Sfp, and χp is the characteristic function of C(Zp)\G(Zp) where C(Zp) =
C(Qp) ∩G(Zp). Note that, since Dp is split, C(Qp) is isomorphic to SL2(Qp).

Proof. By (3.11) we have

θ0
A′(g) = c

∏

p6=∞

fp(g
−1
p (A′)).

In this case, however, the constant c does not depend on g∞ because f0
∞ is G(R)-invariant.

Let gp ∈ G(Qp) such that f0
p (g−1

p (A′)) 6= 0. Let x′, y′, z′ be the off-diagonal terms of

g−1
p A′. Since f0

p is N(Zp)-invariant, it follows from Prop. 2.3 (1) that f0
p is supported in

JRp
= JR ⊗ Zp, hence x′, y′, z′ ∈ Rp.

Consider R/pR, the octonion algebra over Z/pZ. The projections of (x, y, z), the off-
diagonal terms of A′, and (x′, y′, z′) onto R/pR are G(p)-conjugated by the theorem of Ja-
cobson. It follows from Hensel’s lemma that (x, y, z) and (x′, y′, z′) are G(Zp)-conjugated.
Therefore, the function

gp 7→ f0
p (g−1

p (A′))
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is supported in C(Zp)\G(Zp) ⊂ C(Qp)\G(Qp). Since f0
p is G(Zp)-invariant,

f0
p (g−1

p (A′)) = f0
p (A′) = 1,

for gp in G(Zp). The lemma follows.

Let Y be a finite collection of elements ni in N(R), together with a collection of numbers
ci. Define

θY (g) =
∑

i

ciθ
0(gni).

Obviously,

θYA′(g) =
∑

i

ciψA′(g∞nig
−1
∞ )θ0

A′(g∞).

Furthermore, recall that ψx(y) = ψ(Tr(x ◦ y)) = ψy(x), so

θYA′(g) =
∑

i

ciψni
(g−1

∞ (A′))θ0
A′(g∞),

and
θYA′(g) = c

∑

i

ciψni
(g−1

∞ (A′))fS(g−1
S (A′))

∏

p/∈S

χp(gp)

by Lemma 4.6.
In general, θY is not a “K-finite” vector. Still, it is a smooth function on H(Q)\H(A),

and we can use it to define a function β on G′ using the formula (0.2). By (3.12)

βB(1) =

∫

C(A)\G(A)

θYA′(g)PCα (g)dg.

Substituting the expresion for θYA′ , and using that PCα is G(Zp)-invariant for every p /∈ S,

βB(1) = c

∫

C(R×QS)\G(R×QS)

∑

i

ciψni
(g−1

∞ (A′))fS(g−1
S (A′))Pα(g∞gS)dg∞dgS

∏

p/∈S

µp,

where

µp =

∫

SL2(Qp)\G2(Qp)

χpdgp =
#G2(p)

#SL2(p)p11
= (1 − p−6).

The infinite product is ζ−1
S (6), and therefore non-zero. Let p be a prime in S. By Prop.

2.3, fp can be any compactly supported, locally constant function on the set of rank one
matrices in JOp

, hence the integral over C(QS)\G(QS) will be non-zero for a suitable
choice of fS. Since S(R)\G(R), the G(R)-orbit of A′, is compact, by the Stone-Weierstrass
theorem {

∑

i ciψni
} is a dense family of continuous functions. Hence the integral over

C(R)\G(R) can be arranged to be non-zero, too.
Since

θY =
∑

n∈Z

θYn
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in locally uniform convergence of smooth functions on H(Q)\H(A) where θYn belongs to
the n-th “K-type” of Π∞, at least one of these summands has to produce a non-zero β,
with a non-trivial Fourier coefficient at B. The proposition is proved.

Next, let

(4.7) B =





a 0 0
0 b 0
0 0 0



 in U(Q)

be of rank two, i.e. ab 6= 0. Let K = Q(z) be a quaternion subalgebra of O, such that z is
traceless and z2 = −ab.

Proposition 4.8. Let C be the centralizer of K in G. Then the following are equivalent:

(1) PCα 6= 0, and

(2) βB(1) 6= 0 for a choice of θ.

Proof. Analogous to the proof of Prop. 4.5. One also needs non-vanishing of a special
value of the zeta-function ζχ, where χ is the character of A× corresponding to K via the
class-field theory. This is provided in [EG].

Corollary 4.9. Let π = ⊗̂vπv ⊂ L2(G(Q)\G(A)) be an irreducible automorphic represen-

tation. Assume that:

(1) π∞ ∼= W (k1, k2)⊗C, with k2 6= 0, or there exists a finite prime p such that πp has

a Whittaker functional.

(2) There exists α ∈ π and D, a quaternion subalgebra of O, such that PCα 6= 0.

Then Θ(π) contains a non-trivial cusp form on G′, unramified at all places p /∈ S, where

S is given by (4.4 ).

Proof. The second condition and Prop. 4.5 imply that β is non-zero, and unramified
outside S.

To show cuspidality we need to show that βB = 0 for any B of rank less then or equal to
2. Assume that the rank is 0 or 1. The first condition implies that the π is not isomorphic
to the trivial form on G. Hence the period over G is 0. This implies that βB is also 0, by
(3.6) and (3.12).

To show vanishing for B of rank 2, we have to show that SU3-periods vanish, by Prop 4.8.
Assume not. Then each local component of π has a non-trivial SU3-invaraint functional.
This means that π∞ has an SU3(R)-fixed vector, and by the Frobenius reciprocity, (πp)

∗,
the contragredient of πp, is a quotient of C∞

c (G(Qp)/SU
K
3 (Qp)). By the branching law

G2 ↓ A2 [Sa2], the representation W (k1, k2) has an SU3(R)-fixed vector iff k2 = 0. Also,
a generic p-adic representation can not be a quotient of C∞

c (G(Qp)/SU
K
3 (Qp)), in view of

the following:

Lemma 4.10. Let F be a p-adic field, and K ⊂ O ⊗ F a quadratic subalgebra. Let

SU(K⊥) = SUK3 be the centralizer of K in G = Aut(O ⊗ F ). Then the G-module

C∞
c (G/SUK3 )
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does not have a Whittaker functional.

Proof. Let B ⊂ G be a Borel subgroup. The space C∞
c (G/SUK3 ) has a B-invaraint fil-

tration with succesive quotients C∞
c (O), where O runs over the finite set of B-orbits on

G/SUK3 . We need to show that each of the subquotients does not have a Whittaker func-
tional, so our task is to compute B-orbits on G/SUK3 , or equivalently, SUK3 -orbits on
G/B.

Let M2(F ) be the algebra of 2 × 2-matrices over F , with involution

(

a b
c d

)

= −

(

d b
c a

)

.

Then O ⊗ F is isomorphic to the algebra M2(F ) ⊕M2(F ) with multiplication

(a, b)(a′, b′) = (aa′ + b̄′b, b′a+ bā′).

Using this realization of O ⊗ F , it is easy to compute SUK3 -orbits on G/B. Assume,
for example, that K ∼= F ⊕ F , the subalgebra of diagonal matrices in M2(F ). Then
SUK3 = SL3(F ). Let V be the space of traceless elements in O ⊗ F , then

V = V3 ⊕ V ∗
3 ⊕K0.

under the action of SL3(F ). Here V3 is the standard representation of SL3(F ), and
K0 = K ∩ V . The set G/B can be identified with partial flags

V1 ⊂ V2 ⊂ V

consisting of 1 and 2-dimensional spaces with trivial octonion multiplication. We note that
V2 is always contained in the 3-dimensional space

V1∆ = {x ∈ V | x · V1 = 0}.

We have three diferent cases.

(1) The group SL3(F ) acts transitively on partial flags V1 ⊂ V2 such that V1 ⊂ V3.
Indeed, SL3(F ) acts transtively on lines in V3, and the stabilizer of a line V1 is a
maximal parabolic subgroup. Its Levi factor GL2(F ) acts transitively on on the
2-dimensional space

V1∆/V1.

By the same argument, SL3(F ) acts transitively on partial flags such that V1 ⊂ V ∗
3 .

(2) The group SL3(F ) acts with two orbits on partial flags V1 ⊂ V2 such that V1 ⊂
V3 ⊕ V ∗

3 , but not contained in V3 or V ∗
3 . Indeed, in this case

V1 = F (x+ y) ⊂ V3 ⊕ V ∗
3

where x2 = xy = y2 = 0, and we have two orbits, depending whether

V2 = Fx+ Fy = V1∆ ∩ (V3 ⊕ V ∗
3 )
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or not.
(3) The group SL3(F ) acts transitively on partial flags V1 ⊂ V2 such that V1 is not

contained in V3⊕V
∗
3 . Indeed, SL3(F ) acts transitively on such V1, and the stabilizer

is SL2(F ), which acts transitively on on on the 2-dimensional space

V1∆/V1.

Next, let B be a Borel subgroup fixing a partial flag V1 ⊂ V2. Its short simple root
group acts by x 7→ x + b on V2/V1 and and its long simple root group by x 7→ x + b on
V1∆/V2. Now, it is a simple matter to check that in each case B′ = B∩SL3(F ) will contain
1-dimensional subgroup acting by x 7→ x+ b on V2/V1 or V1∆/V2. Hence, C∞

c (B/B′) does
not have a Whittaker functional, and this implies the lemma.

5. Examples.

We prove the non-vanishing of the Θ-lifts of the automorphic representations π con-
structed in Prop. 7.7 and Prop. 7.12 of Chapter I.

Let D be a definite quaternion algebra over Q. Then the Q algebra D ⊕ Dv with
multiplication

(5.1) (a+ bv)(a′ + b′v) = (aa′ − b̄′b) + (b′a+ bā′)v

is a definite octonion algebra, hence it is isomorphic to the Cayley’s octonion algebra O.
Thus D embeds in O = D ⊕ D⊥, and if we fix an element v in D⊥ with v2 = −1, we
get an isomorphism of the subgroup C of G = Aut(O) fixing D with D×

N=1, the group of
norm-one elements in D:

(5.2) d(a+ bv) = a+ (db)v, dd̄ = 1.

The subgroup SO4(D) = {(d, d′) ∈ D× × D× | Nd = Nd′}/∆Q× of G acts on O as
follows:

(5.3) (d, d′)(a+ bv) = d′s(d′)−1 + (db(d′)−1)v.

In particular, it stabilizes D ⊂ O, and contains C as the subgroup {(d, 1)}. The group
SO4(D) is the centralizer in G of the involution i(a+ bv) = a− bv of O.

Now suppose D is the algebra of Hamilton’s quaternions, ramified at 2 and ∞. We will
show the following.

Proposition 5.4. There is an embedding of D into O such that

C(A) = C(Q) × C(R) × (C(Q̂) ∩K(2))

where K(2) is the subgroup of elements in G(Ẑ) congruent to 1 (mod 2).

Proof. First some facts about Hamilton quaternions, independent of octonions. It has the
maximal order R defined by Hurwitz:

R = Zi⊕ Zj ⊕ Zk ⊕ Z(
1 + i+ j + k

2
)
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with unit group

R× =< ±1,±i,±j,±k,
±1 ± i± j ± k

2
>

of order 24. This order gives a model for C over Z, with C(Z) = R× and bad reduction at
2. For p odd, C(Zp) is isomorphic to SL2(Zp).

For p = 2, let R2 = R ⊗ Z2 be a maximal order in D2 = D ⊗ Z2. Then

C(Z2) = (R×
2 )N=1 = C(Q2) = (D×

2 )N=1.

The element ̟ = (1 + i) is a uniformizing element in R2, and we have a filtration by
normal subgroups:

(R×
2 )N=1 ⊃3 (1 +̟R2)N=1 ⊃(2,2) (1 +̟2R2)N=1 ⊃2 (1 +̟3R2)N=1 ⊃(2,2) . . .

where ⊃(2,2), for example, denotes that the quotient is isomorphic to the Klein four-group.
We have

R× ∩ (1 +̟R2)N=1 =< ±1,±i,±j,±k >

R× ∩ (1 +̟2R2)N=1 =< ±1 >

R× ∩ (1 +̟3R2)N=1 = 1

Since the global units lie in distinct cosets of (R×
2 )N=1/(1 +̟3R2)N=1, and the latter

group has order 24, we obtain a direct product decomposition:

C(Z2) = R× × (1 +̟3R2)N=1.

The mass formula (of Eichler) gives

C(A) = C(Q)(C(R) × C(Ẑ))

with intersection C(Z). Hence we have a direct product

C(A) = C(Q) × ((C(R) × (1 +̟3R2)N=1 ×
∏

p6=2

C(Zp)).

To finish the proof of the proposition, we need to find an embedding of D in O such
that

C(Q̂) ∩K(2) = (1 +̟3R2)N=1 ×
∏

p6=2

C(Zp)).

Let R be the ring of integral octonions constructed by Coxeter, so K(2) is the subgroup

of Aut(R⊗ Ẑ) which acts trivially on R/2R. We embed the Hurwitz R into the Coxeter
R via i 7→ e1, j 7→ e2, k 7→ e4. If we take v = e3 then

O = D ⊕D⊥ and

R ⊃(2,2) R⊕R⊥.
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The general element of R has the form

1

2
(a+ be3)

with a, b in ̟R, ̟ = (1 + i) = (1 + e1). If we write

a =̟α

b =̟β

then for the above to lie in O, we need the congruence

α ≡ β̄ (mod ̟R).

It is now a simple matter to check that (1 + ̟R2)N=1 ×
∏

p6=2 C(Zp) is the subgroup

of G(Ẑ) fixing D. Similarly, (1 + ̟3R2)N=1 ×
∏

p6=2C(Zp) is the subgroup fixing D and

acting trivially on R/2R. The propositon is proved.

Proposition 5.5. Let π be the automorphic representation of G given in Prop. 7.7 in

Chapter I. (π∞ is isomorphic to the irreducible 64-dimensional representation of G(R) of

highest weight ρ, π2 is the Steinberg representation of G(Q2) and πp is unramified for all

p 6= 2). Then π lifts to a cusp form π′ on G′, with:

(1) π′
∞ is a holomorphic discrete series representation with infinitesimal character

(6, 4, 2).
(2) π′

p, for p 6= 2 is unramified with Satake parameter in G2(C) ⊂ Spin7(C).
(3) π′

2 is the Steinberg representation.

Proof. We will show that the period over C given by Prop. 5.4 is non-zero for a K(2)-fixed
function in π. Using the direct product decomposition

G(Q)\G(A) = G(R) ×K(2),

one identifies the space of K(2)-fixed vectors in π with the space of matrix coefficients of
W on G(R). By Prop. 5.4 we have to show that there exists a matrix coefficient of W
such that its integral over C(R) is not zero.

Every finite-dimensional representation of G(R) has a C(R) ∼= SU2(R)-fixed vector.
Indeed, we have a chain of groups

SU2 ⊂ SU3 ⊂ G

where SU3 is the stabilizer in G of a quadratic subalgebra of D, for example Q(i). Since
it is true that every representation of SU3(R) has SU2(R)-fixed vectors, the same is true
for G(R).

Let w be a C(R)-fixed vector in W . Obviously, the matrix coefficient < w, gw > has
non-vanishing integral over C(R). Hence the Fourier coefficient at

B =





1 0 0
0 1 0
0 0 1





is not zero. The proposition follows from Cor. 4.9. The information about the local
components of π′ follows from Cor. 3.9 of Chapter III and Prop. 3.1 of Chapter IV.

We now assume that D is the definite quaternion algebra ramified at 5 and ∞.
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Proposition 5.6. There is an embedding of D into O and a Borel subgroup B(5) ⊂ G(5)
such that

C(A) = C(Q) × C(R) × (C(Q̂) ∩K0(5))

where K0(5) is the subgroup of elements in G(Ẑ) reducing to B(5) (mod 2).

Proof. Let R be a maximal order in D, which is unique up to D×-conjugacy. We have
R× = µ6. The order R gives a model of C over Z, with bad reduction at 5. The units lie
in the 6 distinct cosets for the subgroup (1+̟R), where Tr(̟) = 0 and N(̟) = 5. Hence
we obtain a direct product

C(A) = C(Q) × (C(R) × (1 +̟R5)N=1 ×
∏

p6=5

C(Zp)).

Let R be the Coxeter’s order in O. There is an embedding R→ R, which is unique up
to conjugacy by Aut(R) = G(Z). Let R⊥ be the orthogonal complement of R in R; again
we find that

R ⊕R⊥ ⊂(5,5) R,

and that the subgroup of G(Ẑ) fixing R⊗ Ẑ is precisely (1 +̟R5)N=1 ×
∏

p6=5C(Zp).

Since (1 + ̟R5)N=1 is a 5-group, its reduction in G(5) is contained in the unipotent

radical of some Borel subgroup B(5). Hence C(Q̂)∩K0(5) = (1+̟R5)N=1×
∏

p6=5C(Zp),
which completes the proof.

In Section 7 of Chapter I, we showed that the space

(5.7) S = G(Q)\G(A)/G(R) ×K0(5)

had 7 elements. We also showed that there was a non-zero function f : S → Q, unique up
to scaling, in the Steinberg subspace: Tif = −f for the three generators T0, T1, T2 of the
Iwahori-Hecke algebra at 5.

The function f determines a 1-dimensional subspace < F > in the automorphic rep-
resentation π of Prop. 7.12. The period of F over C(Q)\C(A) is non-zero if and only
if f(e) 6= 0, where e is the identity double coset of S (e is the image of C(A), by the
Prop. 5.6). A computer calculation, performed by D. Pollack and J. Lansky, showed that
f(e) 6= 0. Hence we obtain

Proposition 5.8. Let π be the automorphic representation of G given in Prop. 7.12 in

Chapter I. (π∞ ∼= 1, π5 is the Steinberg representation of G(Q5) and πp is unramified for

all p 6= 5). Then π lifts to a cusp form π′ on G′, with

(1) π′
∞ is a holomorphic discrete series representation with infinitesimal character

(3, 2, 1).
(2) π′

p, for p 6= 5 is unramified with Satake parameter in G2(C) ⊂ Spin7(C).
(3) π′

5 is the Steinberg representation.

The automorphic representation π′ corresponds to a classical holomorphic form of weight

4 and level 5.
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VI Periods

As we indicated in the introduction, the complement of the motive M in M ′ should
be given by the classes of Hilbert modular 3-folds. If so, the forms on G′ coming from
G should be characterized as those having non-zero periods over the cycles given by the
Hilbert modular 3-folds. We give an affirmative answer to this question in the local setting.

1. A see-saw dual pair in En.
We let F be a p-adic field, E a separable cubic extension of F , and H a split adjoint

group over F of type E6, E7 or E8. Let H ′ = H o Γ be the semi-direct product of H with
its group of outer automorphisms Γ. Note that Γ ∼= Z/2Z for E6, and is trivial otherwise.
The see-saw pair in H ′ is

(1.1)
DE

4 G′

G2 C′
E

where all groups are quasi-split over F , DE
4 is a twist of the simply connected group of type

D4 by the homomorphism Gal(F̄ /F ) → S3 (the outer automorphisms ofD4) corresponding
to the cubic etale algebra E, and the subgroups G′ and C′

E are tabulated below.

(1.2)

Type of H G′ C′
E

E6 PGL3 o Γ (RE/FGm/Gm) o Γ
E7 PGSp6 RE/FSL2/µ2

E8 F4 DE
4

The center of G′ is trivial, and the pair G2 ×G
′ is a maximal subgroup of H ′, whereas the

center of C′
E is

(1.3) KE
4 = (RE/Fµ2)/µ2 = DE

4 ∩ C′
E ,

a twist of the Klein group K4, and the subgroup DE
4 ×C′

E/∆K
E
4 is not maximal, for it is

contained in the centralizer in H ′ of any non-trivial element of KE
4 .

In the following section, we will characterize the irreducible representations π′ of G′(F )
which appear as quotients of the minimal representation of H ′(F ); these are the represen-
tations with a non-zero, C′

E-invariant linear functional, for some E.
Let Tr : E → F be the trace form. Since E is separable, the pairing E×E → F given by

(v, w) = Tr(vw) is non-degenerate. Let {v1, v2, v3} be a basis for E over F , and consider
the F -linear embedding E → J(F )

(1.4) α 7→ Aα = (Tr(α · vivj)),

where J(F ) is the 6-dimensional space of symmetric 3 × 3 matrices over F . The matrix

(1.5) e = A1 = (Tr(vivj))
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has det(e) 6= 0, by the non-degeneracy of the pairing.
Now let D ⊆ O⊗F be an F -subalgebra, on which the norm form is non-degenerate and

represents 0. Let J(D) be the F -vector space of 3× 3 Hermitian symmetric matrices over
D. We then have a chain of subspaces

(1.6) Fe ⊂ E ⊂ J(F ) ⊂ J(D) ⊆ JO ⊗ F.

Let L′ be the algebraic group of all invertible linear maps on J(D) which preserve the
determinant form det : J(D) → F . These groups are tabulated below [EG]:

(1.7)

D J(D) L′

F + F M3(F ) (SL3 × SL3/∆µ3) o Γ
M2(F ) ∧2F 6 SL6/µ2

O ⊗ F JO ⊗ F E6

where we have identified J(D) with a more familiar L′-module. Note that the center of L′

is µ3.
Let l be the Lie algebra of L′, and V3 the standard 3-dimensional representation of

SL(3). In [Sa2] it is shown that the direct sum

(1.8) h = (sl(3) ⊕ l) ⊕ (V3 ⊗ J(D)) ⊕ (V3 ⊗ J(D))∗

has the structure of a simple, split Lie algebra of type En, (n = 6, 7, 8), with a Z/3Z-
gradation given by the action of the center of the subgroup

(1.9) SL3 × L′/∆µ3

of H ′.
It can be checked that the centralizer of e in L′ ⊂ H ′ is G′, and the centralizer of G′ in

H ′ has Lie algebra

(1.10) g2 = sl(3) ⊕ (V3 ⊗ Fe) ⊕ (V3 ⊗ Fe)∗

of type G2.
Let E0 ⊂ E be the kernel of the trace map Tr : E → F . The centralizer of E ⊂ J(D)

in L′ is C′
E , and the centralizer of C′

E in H ′ has Lie algebra

(1.11) dE4 = (sl(3)⊕ E0) ⊕ (V3 ⊗ E) ⊕ (V3 ⊗ E)∗

of type D4, split by E [Ru]. This gives a construction of the see-saw pair.

2. Periods.

The minimal representation Π, defined in Chapter IV, can be easily extended to H ′;
more precisely, the polarization used in [KS; pg 212] is Γ-invariant, and by taking the
structural coefficients to be Γ-invariant, the representation extends to H ′ in an obvious
way.
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Consider the decomposition (1.8) of h. Let t be the Cartan subalgebra of sl(3), consisting
of diagonal traceless matrices. Let

(2.1) h =





1 0 0
0 0 0
0 0 −1



 ∈ t ⊂ sl(3) ⊂ h.

Define

(2.2) h(k) = {x ∈ h | [h, x] = kx}.

Since the eigenvalues of h on the standard 3-dimensional representation V3 of sl(3) are
−1, 0, 1, the decomposition (1.8) implies that h(k) 6= 0 for k = −2,−1, 0, 1, 2. For example,

(2.3) h(0) = J(D)∗ ⊕ t ⊕ h ⊕ J(D).

Write g = n̄ ⊕ m ⊕ n where

(2.4)











m = h(0)

n = h(1) ⊕ h(2)

n̄ = h(−1) ⊕ h(−2).

Then p = m ⊕ n is a maximal parabolic subalgebra. The nilpotent radical n is a two-step
nilpotent (Heisenberg) Lie algebra, with the center z = h(2). Analogous statements are
true for the opposite algebra p̄ = m⊕ n̄. Under the action of t⊕ l ⊂ m, we have direct sum
decompositions

(2.5)

{

n/z ∼= h(1) = F ⊕ J(D) ⊕ J(D)∗ ⊕ F ∗

n̄/z̄ ∼= h(−1) = F ∗ ⊕ J(D)∗ ⊕ J(D) ⊕ F.

Let P ′ = M ′N be the “Heisenberg” maximal parabolic subgroup of H ′, with Lie algebra
p. Let Z be the center of N . The quotient of N by Z is commutative and N/Z ∼= n/z

as M -modules. Let P̄ ′ = M ′N̄ be the parabolic subgroup opposite to P ′, and Z̄ be the
center of N̄ . The Killing form on h, the Lie algebra of H, defines a non-degenerate pairing
<,> between N/Z and N̄/Z̄. In terms of the identifications (2.5) this pairing is

(2.6) < (x, u, u∗, x∗), (y∗, v∗, v, y) >= xy∗+ < u, v∗ > + < v, u∗ > +yx∗.

Let Ω be the smallest non-trivial M ′-orbit in N/Z. It is simply the orbit of a highest
weight vector.

Proposition 2.7. (p 6= 2 if G = E8) Let Π be the minimal representation of H ′. Let Z̄
be the center of N̄ as above. Let ΠZ̄ and ΠN̄ be the maximal Z̄-invariant and N̄-invariant

quotients of Π. Then

0 → C∞
c (Ω) → ΠZ̄ → ΠN̄ → 0
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where C∞
c (Ω) denotes the space of locally constant, compactly supported functions on Ω.

The action of P̄ ′ on C∞
c (Ω) is given by

Π(n̄)f(x) = ψ(< x, n̄ >)f(x), n̄ ∈ N̄

Π(m)f(x) = | det(m)|
s
d f(m−1xm), m ∈M ′,

where ψ is a non-trivial addititive character of F , det is the determinant of the represen-

tation of M ′ on N̄/Z̄, d is the dimension of N/Z. The values are given by the following

table.
G s d
E6 4 20
E7 6 32
E8 10 56

Proof. This is a simplified version of [MS; Thm 6.1].

We are now ready to prove the main result of this section. Let e be an element in J(D),
such that (e, e, e) = 6, and let G′ ⊂ L′ ⊂ H ′ be the centralizer of e in L′.

Proposition 2.8. Let π′ be a representation of G′ with a non-zero C′
E-invariant func-

tional. Then (π′)∗ (the contragredient of π′) is a quotient of Π.

Proof. If we compare the construction (1.10) of the dual pair G2 ×G′ with the definition
of P ′, we find that

G2 ∩ P
′ = P2 = GL2 U2

is the “Heisenberg” parabolic of G2. Note that Z ⊂ U2, and in terms of the identification
(2.5),

U2/Z ∼= F ⊕ Fe⊕ Fe∗ ⊕ F ∗ ⊂ F ⊕ J(D) ⊕ J(D)∗ ⊕ F ∗ ∼= N/Z,

where e∗ is a G′-fixed element of J(D)∗, normalized by < e∗, e >= 3.

The action of GL2, the Levi factor of P2, on U2/Z is isomorphic to S3(F 2)⊗det−1, and
this was studied in [Wr]. Generic GL2-orbits correspond to cubic separable extensions of
F as follows. A point (a, b, c, d) in U2/Z defines a binary cubic form

ax3 + bx2y + cxy2 + dy3.

The corresponding GL2-orbit is generic if and only if the form has three different solutions
in P(Q̄p). Assume that a = 6. This just means that (6, 0) is not a solution of the cubic
form. Then

E = F [x]/(x3 + bx2 + cx+ d)

is the cubic separable algebra.

The pairing <,> restricits to a non-degenerate pairing between U2/Z and Ū2/Z̄. There-
fore, the point (a, b, c, d) and the additive character ψ define a character ψE of Ū2.
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Lemma 2.9. Let ΠŪ2,ψE
be the maximal quotient of Π such that Ū2 acts as the character

ψE on it. Then

ΠŪ2,ψE
= C∞

c (G′/C′
E).

Proof. Prop. 2.8 and (2.6) imply that

ΠŪ2,ψE
= C∞

c (Ω)Ū2,ψE
= C∞

c (ΩE)

where
ΩE = {(6, u, u∗, d) ∈ Ω | < u, e∗ >= b and < e, u∗ >= c}.

We need to show that G′ acts transitively on ΩE . Let q ⊂ m be a maximal parabolic
subalgebra given by

q = (t ⊕ h) ⊕ J.

Let Q′ be the corresponding subgroup of M ′, and let U ∼= J be the unipotent radical of
Q′. The group Q′ preserves the partial flag in N/Z

F ⊕ J(D) ⊕ J(D)∗ ⊕ F ∗ ⊃ J(D) ⊕ J(D)∗ ⊕ F ∗ ⊃ J(D)∗ ⊕ F ∗ ⊃ F ∗.

By [MS; Lemma 7.5], Q′ has 4 orbits on Ω, given by the position of a point in Ω, relative
to the flag. Hence, ΩE is in the Q′-orbit of (6, 0, 0, 0). Moreover, by (2.5) the Levi factor of
Q′ preserves the line through (6, 0, 0, 0), hence ΩE is contained in the U -orbit of (6, 0, 0, 0).

This action of U is given by (3.11) in Chapter II. In particular, if z is an element in
U ∼= J , then

z(6, 0, 0, 0) = (1, 6z, 3z × z, (z, z, z)).

So, if (6, u, u∗, d) is an element in ΩE , then











u = 6z

u∗ = 3z × z

d = (z, z, z),

and, since e∗ = 1
2
e× e,











b = 3(z, e, e)

c = 3(z, z, e)

d = (z, z, z).

Hence, the characteristic polynomial of z is

6 det(λ− z) = (λ− z, λ− z, λ− z)

= (e, e, e)λ3 − 3(z, e, e)λ2 + 3(z, z, e)λ− (z, z, z)

= 6λ3 − bλ2 + cλ− d.

The group G′ acts transitively on the set of such elements. In the first case, L′ acts
transitively on 3× 3 matrices with determinant 1, so we can assume that e is the identity
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matrix. Hence ΩE is the set of all 3 × 3 matrices with the characteristic polynomial (in
the usual sense)

6λ3 − bλ2 + cλ− d,

i.e. it is a regular, semi-simple conjugacy class of 3 × 3 matrices. This implies the lemma
in the first case. The general case can be reduced to this [J2; Thm. 10, pg 389]. The
lemma is proved.

The proposition follows from Lemma 2.9 and the Frobenius reciprocity.

Corollary 2.10. Let E be a cubic separable algebra over F . Let π(s′) be an unramified

representation of PGSp6(F ) with a non-trivial C′
E-functional. Then s′ = f(s) for some

semisimple conjugacy class s in G2(C). If, in addition, π(s′) is tempered, then the converse

is also true.

Proof. Note that every unramified representation of PGSp6 is self-contragredient. So, if
π(s′) has a non-trivial C′

E-invariant functional, π(s′) is a quotient of Π by Prop. 2.8.
Hence s′ = f(s) for some s in G2(C) by Prop. 3.1 of Chapter IV.

Now assume that π(s′) is tempered and s′ = f(s). Then π(s) ⊗ π(s′) is a quotient of
Π by [MS; Thm. 5.4]. Since π(s) is a fully induced representation [Ke], it follows that
π(s)Ū2,ψE

6= 0. By Lemma 2.9

ΠŪ2,ψE
= C∞

c (G′/C′
E),

so the second statement follows from the Frobenius reciprocity.
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