MATH 6370, LECTURE 8 APRIL 03

GORDAN SAVIN

We shall now revisit cyclotomic fields and compute their Galois group in full generality. We start with the power of a prime case, so let p be a prime and $\omega \in \mathbb{C}^{\times}$a primitive root root of order p^{n}. Thus ω is a root of $x^{p^{n}}-1$ but not a root of $x^{p^{n-1}}-1$, so it is a root of

$$
\Phi_{p^{n}}(x)=\frac{x^{p^{n}}-1}{x^{p^{n-1}}-1}=\left(x^{p^{n-1}}\right)^{p-1}+\left(x^{p^{n-1}}\right)^{p-2}+\ldots+1 .
$$

This polynomial is irreducible. This is proved using the Eisenstein criterion applied to $\Phi_{p^{n}}(x+1)$. Observe that $(x+1)^{p^{n-1}} \equiv x^{p^{n-1}}+1(\bmod p)$ hence

$$
\Phi_{p^{n}}(x+1) \equiv \frac{\left(x^{p^{n-1}}+1\right)^{p}-1}{x^{p^{n-1}}}=\left(x^{p^{n-1}}\right)^{p-1}+p\left(x^{p^{n-1}}\right)^{p-2}+\ldots+p .
$$

Thus $\mathbb{Q}(\omega)$ is a Galois extension of degree $p^{n-1}(p-1)$. Let G be its Galois group. Let $\sigma \in G$. Then σ is determined by $\sigma(\omega)$, which has to be another primitive root. Hence $\sigma(\omega)=\omega^{a}$ for a unique $a \in\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$. Hence $G \cong\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$. The ring of integers is $A=\mathbb{Z}[\omega]$, this is similar to the case $n=1$ done in class, and we have the following equality of ideals

$$
(1-\omega)^{p^{n-1}(p-1)}=A p
$$

which is checked by substituting 1 into the cyclotomic polynomial. Other primes $q \neq p$ are unramified since $x^{p^{n-1}}-1$ has no repeated roots modulo q, and $\operatorname{Fr}_{q}(\omega)=\omega^{q}$, hence it corresponds to $q \in\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times} \cong G$.

In order to deal with $\mathbb{Q}(\omega)$ where ω is a primitive m-th root of 1 , and m is not a power of a prime, we need the following.

Lemma 0.1. Let E and F be two Galois extension of \mathbb{Q}. Let G_{E} and G_{F} be the respective Galois groups. Let K be the smallest field containing E and F. Let G be its Galois group. If $E \cap F=\mathbb{Q}$ Then

$$
G \cong G_{E} \times G_{F} .
$$

Proof. If E and F are splitting fields of polynomials $P(x)$ and $Q(x)$ then K is the splitting field of $P(x) Q(x)$ so it is Galois, and restricting $\sigma \in G$ to E and F gives a natural injection

$$
G \rightarrow G_{E} \times G_{F}
$$

In particular,

$$
|G| \leq\left|G_{E}\right| \cdot\left|G_{F}\right|
$$

In order to prove the lemma it suffices to show that we have equality here. Let N_{E} and N_{F} be the normal subgroups of G such corresponding to E and F via the Galois theory, that is, fixing the fields E and F. Moreover,

$$
G_{E} \cong G / N_{E} \underset{1}{\text { and }} G_{F} \cong G / N_{F}
$$

Hence $\left|G_{E}\right|=|G| /\left|N_{E}\right|$ and $\left|G_{F}\right|=|G| /\left|N_{F}\right|$, and the above inequality is equivalent to

$$
\left|N_{E}\right| \cdot\left|N_{F}\right| \leq|G| .
$$

Let N be the group generated by N_{E} and N_{F}. In view of normality of N_{E} and N_{F}, the group N, as a set is the product $N_{E} \cdot N_{F}$, hence $|N| \leq\left|N_{F}\right| \cdot\left|N_{E}\right|$. The group N is normal, and its fixed field is $E \cap F=\mathbb{Q}$, hence $G=N$, and all inequalities are equalities.

Now assume that ω is a primitive m-th root of 1 , where $m=p^{a} q^{b}$ (for simplicity we assume that there are only 2 different primes appearing in the factorization of m). Then $\omega^{q^{b}}$ and $\omega^{p^{a}}$ are primitive roots of of order p^{a} and q^{b}, respectively. Let $E=\mathbb{Q}\left(\omega^{q^{b}}\right), F=\mathbb{Q}\left(\omega^{p^{a}}\right)$ and $K=\mathbb{Q}(\omega)$. Clearly $E, F \subset K$. Moreover, since p^{a} and q^{b} are relatively prime, there exists integers u, v such that

$$
u p^{a}+v q^{b}=1
$$

This implies that K is generated by E and F (why?). Next, consider $E \cap F$. Let r be a prime that ramifies in $E \cap F$. Then r ramifies in E, so $r=p$ and r ramifies in F, so $r=q$, a contradiction. Hence $E \cap F$ is everywhere unramified extension of \mathbb{Q}. But there are no such extensions, hence $E \cap F=\mathbb{Q}$. At this point the lemma applies, so the Galois group G of $\mathbb{Q}(\omega)$ is isomorphic to

$$
\left(\mathbb{Z} / p^{a} \mathbb{Z}\right)^{\times} \times\left(\mathbb{Z} / q^{b} \mathbb{Z}\right)^{\times}
$$

and hence

$$
G \cong(\mathbb{Z} / m \mathbb{Z})^{\times}
$$

by the Chinese reminder theorem. Of course, this isomorphism simple traces what an element $\sigma \in G$ does to ω. In particular, any prime r not dividing m is unramified and

$$
\mathrm{Fr}_{r}=r \in(\mathbb{Z} / m \mathbb{Z})^{\times}
$$

by the isomorphism.

