MATH 5210, LECTURE 8 - RIESZ-FISCHER THEOREM APRIL 03

Let V be a Euclidean vector space, that is, a vector space over \mathbb{R} with a scalar product (x, y). Then V is a normed space with the norm $||x||^2 = (x, x)$. We shall need the following continuity of the dot product.

Exercise. Let $x, y \in V$ and (x_n) a sequence in V converging to x. Then

$$\lim_{n \to \infty} (x_n, y) = (x, y)$$

Hint: Use Cauchy Schwarz inequality.

Solution. (x_n) converging to x means $\lim_n ||x_n - x|| = 0$.

$$|(x_n, y) - (x, y)| = |(x_n - x, y)| \le ||x_n - x|| \cdot ||y||$$

hence (x_n, y) converges to (x, y).

Now assume that V is a Hilbert space, i.e. a separable and complete Euclidean space. Let e_1, e_2, \ldots its orthonormal basis, see the previous lecture. In particular, the subspace U spanned by e_1, e_2, \ldots is a dense subset.

Lemma 0.1. Bessel's inequalty. For every $v \in V$, and every $n \in \mathbb{N}$,

$$(v, e_1)^2 + \ldots + (e_n, v)^2 \le ||v||^2.$$

Proof. Let

$$v_n = (v, e_1)e_1 + \ldots + (v, e_n)e_n.$$

Then, for every $i \leq n$,

$$(v - v_n, e_i) = (v, e_i) - (v_n, e_i) = 0.$$

Since v_n is a linear combination of e_i for $i \leq n$, it follows that v_n and $v - v_n$ are perpendicular. By the Pythagorean equality,

$$||v_n||^2 \le ||v_n||^2 + ||v - v_n||^2 = ||v||^2.$$

The lemma follows since $||v_n||^2 = (v, e_1)^2 + \ldots + (v, e_n)^2.$

Now we can prove the main result in the theory of (infinite dimensional) Hilbert spaces.

Theorem 0.2. (*Riesz-Fischer*) Let V be a Hilbert space, and e_1, e_2, \ldots its orthonormal basis. Then

(1) Fourier series. For every $v \in V$,

$$v = (v, e_1)e_1 + (v, e_2)e_2 + \dots$$

- *i.e.* the series is absolutely convergent and it converges to v.
- (2) Parsevals' identity. For every $v \in V$,

$$|v||^2 = (v, e_1)^2 + (v, e_2)^2 + \dots$$

(3) If $(x_1, x_2, ...)$ is a sequence of real numbers such that $x_1^2 + x_2^2 + ... < \infty$ then the series

$$x_1e_1+x_2e_2+\ldots$$

is absolutely convergent and it converges to an element in V.

Proof. (1) Let $v_n = (v, e_1)e_1 + \ldots + (v, e_n)e_n$, for $n \in \mathbb{N}$. We need to show that this sequence converges to v. By the Bessel's inequality, the series $\sum_{n=0}^{\infty} (v, e_n)^2$ is convergent. Thus, for every $\epsilon > 0$ there exists N such that

$$\sum_{n>N} (v, e_n)^2 < \epsilon$$

If m > n > N then

$$||v_m - v_n||^2 = (v, e_{n+1})^2 + \ldots + (v, e_m)^2 < \epsilon.$$

This shows that the sequence (v_n) is Cauchy. Since V is complete, it has a limit $\lim_n v_n = w \in V$. It remains to show that v = w. Observe that, using the exercise,

$$(w, e_i) = (\lim_n v_n, e_i) = \lim_n (v_n, e_i) = (v, e_i).$$

Hence w - v is perpendicular to all e_i and to the linear span U of e_i . But this space is dense, hence w - v = 0, as we proved in the last lecture.

(2) follows form

$$|v||^2 = \lim_n ||v_n||^2,$$

since $v = \lim_{n \to \infty} v_n$, and $||v_n||^2 = (v, e_1)^2 + \ldots + (v, e_n)^2$.

(3) Let $v_n = x_1e_1 + \ldots + x_ne_n$. Then (v_n) is Cauchy by the same argument as in (1) thus the series is converging to an element in V since V is complete.

Corollary 0.3. Any Hilbert space V is isomorphic to $\ell^2(\mathbb{N})$.

Proof. Indeed, by the map

$$v \mapsto ((v, e_1), (v, e_2), \ldots),$$

for every $v \in V$, is a norm-preserving isomorphism from V onto $\ell^2(\mathbb{N})$.

This is great result, for it gives a classification of Hilbert spaces. There is only one, up to an isomorphism.