Let F be a Galois extension of \mathbb{Q} of degree n and let A be the ring of integers in F. Recall the Dedekind zeta function

$$
\zeta_F(s) = \sum_{I \subseteq A} \frac{1}{N(I)^s} = \prod_{P \subseteq A} \left(1 - \frac{1}{N(P)^s}\right).
$$

Assume now that F is Galois with the Galois group G. Let p be a prime. We have a factorization $A_p = P_1^{e_1} \cdots P_g^{e_g}$, let P be any of these primes. Then A/P is a degree f extension of $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ where $n = efg$. Then $N(P_1) = \cdots = N(P_g) = p^f$. If we group together the primes P dividing p in the factorization of $\zeta_F(s)$, then we get

$$
\zeta_F(s) = \prod_p \left(1 - \frac{1}{p^fs}\right)^g.
$$

Let $(r, \mathbb{C}[G])$ be the regular representation of G.

Proposition 0.1. The Dedekind zeta function $\zeta_F(s)$ is equal to the Artin L-function attached to the regular representation.

Proof. We need to establish identities

$$
\left(1 - \frac{1}{p^fs}\right)^g = L_p(r, s)
$$

for all primes p. Assume that p is unramified, $A_p = P_1^{e_1} \cdots P_g^{e_g}$, let P be any of these primes. Let Fr_P be the Frobenius element where $P \subseteq A$ a prime dividing p. We need to show that

$$
\left(1 - \frac{1}{p^fs}\right)^g = \det \left(1 - r(\text{Fr}_P)/p^s\right).
$$

To simplify notation, write $\sigma = \text{Fr}_P$, and $\lambda = p^s$. Since $r(\text{Fr}_P)$ is an $n \times n$ matrix, we have

$$
\lambda^n \det \left(1 - \frac{r(\sigma)}{\lambda}\right) = \det(\lambda - r(\sigma)).
$$

Thus we need to compute the characteristic polynomial of $r(\sigma)$. Let $H \subseteq G$ be the cyclic group generated by σ. The order of H is f. (Of course, $H = D_P$ the decomposition group, though this is not important in this moment.) Write G as a union of H-cosets

$$
G = \sigma_1 H \cup \ldots \cup \sigma_g H.
$$

Then

$$
\mathbb{C}[G] = \mathbb{C}[\sigma_1 H] \oplus \ldots \oplus \mathbb{C}[\sigma_g H] \cong \mathbb{C}[H]^g,
$$
and \(r(\sigma) \) preserves each summand. The space \(\mathbb{C}[H] \) has basis of delta functions \(\delta_{\sigma}, \ldots, \delta_{\sigma^f} \) and \(r(\sigma) \) permutes them cyclically. Hence \(r(\sigma) \) is represented by a block-diagonal matrix with \(g \) blocks, and each block is an \(f \times f \) cycle permutation matrix. The characteristic polynomial of this permutation matrix is \(\lambda^f - 1 \) (check this), thus

\[
\det(\lambda - r(\sigma)) = (\lambda^f - 1)^g
\]

and

\[
\det \left(1 - \frac{r(\sigma)}{\lambda^n} \right) = \left(1 - \frac{1}{\lambda^f} \right)^g
\]
as desired.

Exercise. Work out the local factors at ramified primes.

It is well known that every irreducible representation \((\rho, V)\) appears as a direct summand of the regular representation with multiplicity \(n_\rho = \dim V \). Thus from the multiplicative property of Artin’s \(L \)-functions and the above theorem it follows that

\[
\zeta_F(s) = \prod_\rho L(\rho, s)^{n_\rho}
\]

where the product is taken over all isomorphism classes of irreducible representations of \(G \). We know that \(\zeta_F(s) \) has a simple pole at \(s = 1 \), and so does the Riemann zeta function which appears on the right, corresponding to the trivial representation. So it is conjectured that Artin \(L \)-functions for irreducible non-trivial \(\rho \) have analytic continuations to entire functions on \(\mathbb{C} \). This is known for abelian \(G \), by Tate’s thesis, and for solvable \(G \) by Langlands. In general this conjecture is wide open.

Home-work problem. Let \(\ell \) be a prime, and \(\omega = e^{2\pi i/\ell} \). Let \(F = \mathbb{Q}(\omega) \). Let \(E = F(2^{1/\ell}) \). In words, \(E \) is the splitting field of \(x^\ell - 2 \). Let \(G \) be the Galois group of \(E \). Show that

\[
G \cong \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in \text{GL}_2(F\ell) \right\}
\]

Hint: every \(\sigma \in G \) is determined by its action on \(\omega \) and \(2^{1/\ell} \). Use this matrix representation of \(G \) to determine conjugacy classes in \(G \). Prove the Čebovarev density theorem for \(G \). Hint: first factor \(p \) in \(F \), use the distribution statement for \(F \) and that the set of primes \(p \) that split completely in \(E \) has density \(1/|G| \).