MATH 6370, LECTURE 7 APRIL 01

GORDAN SAVIN

Let F be a Galois extension of \mathbb{Q} of degree n and let A be the ring of integers in F. Recall the Dedekind zeta function

$$
\zeta_{F}(s)=\sum_{I \subseteq A} \frac{1}{N(I)^{s}}=\prod_{P \subset A} \frac{1}{\left(1-\frac{1}{N(P)^{s}}\right)}
$$

Assume now that F is Galois with the Galois group G. Let p be a prime. We have a factorization $A p=P_{1}^{e} \cdot \ldots \cdot P_{g}^{e}$, let P be any of these primes. Then A / P is a degree f extension of $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ where $n=e f g$. Then $N\left(P_{1}\right)=\ldots=N\left(P_{g}\right)=p^{f}$. If we group together the primes P dividing p in the factorization of $\zeta_{F}(s)$, then we get

$$
\zeta_{F}(s)=\prod_{p} \frac{1}{\left(1-\frac{1}{p^{f s}}\right)^{g}}
$$

Let $(r, \mathbb{C}[G])$ be the regular representation of G.
Proposition 0.1. The Dedekind zeta function $\zeta_{F}(s)$ is equal to the Artin L-function attached to the regular representation.

Proof. We need to establish identities

$$
\frac{1}{\left(1-\frac{1}{p^{f s}}\right)^{g}}=L_{p}(r, s)
$$

for all primes p. Assume that p is unramified, $A p=P_{1} \cdot \ldots \cdot P_{g}$, let P be any of these primes. Let Fr_{P} be the Frobenius element where $P \subseteq A$ a prime dividing p. We need to show that

$$
\left(1-\frac{1}{p^{f s}}\right)^{g}=\operatorname{det}\left(1-\frac{r\left(\operatorname{Fr}_{P}\right)}{p^{s}}\right) .
$$

To simplify notation, write $\sigma=\operatorname{Fr}_{P}$, and $\lambda=p^{s}$. Since $r\left(\operatorname{Fr}_{P}\right)$ is an $n \times n$ matrix, we have

$$
\lambda^{n} \operatorname{det}\left(1-\frac{r(\sigma)}{\lambda}\right)=\operatorname{det}(\lambda-r(\sigma))
$$

Thus we need to compute the characteristic polynomial of $r(\sigma)$. Let $H \subseteq G$ be the cyclic group generated by σ. The order of H is f. (Of course, $H=D_{P}$ the decomposition group, though this is not important in this moment.) Write G as a union of H-cosets

$$
G=\sigma_{1} H \cup \ldots \cup \sigma_{g} H
$$

Then

$$
\mathbb{C}[G]=\underset{1}{\mathbb{C}\left[\sigma_{1} H\right]} \underset{1}{\ldots} \oplus \mathbb{C}\left[\sigma_{g} H\right] \cong \mathbb{C}[H]^{g}
$$

and $r(\sigma)$ preserves each summand. The space $\mathbb{C}[H]$ has basis of delta functions $\delta_{\sigma}, \ldots, \delta_{\sigma^{f}}$ and $r(\sigma)$ permutes them cyclically. Hence $r(\sigma)$ is represented by a block-diagonal matrix with g blocks, and each block is an $f \times f$ cycle permutation matrix. The characteristic polynomial of this permutation matrix is $\lambda^{f}-1$ (check this), thus

$$
\operatorname{det}(\lambda-r(\sigma))=\left(\lambda^{f}-1\right)^{g}
$$

and

$$
\operatorname{det}\left(1-\frac{r(\sigma)}{\lambda^{n}}\right)=\left(1-\frac{1}{\lambda^{f}}\right)^{g}
$$

as desired.
Exercise. Work out the local factors at ramified primes.
It is well known that every irreducible representation (ρ, V) appears as a direct summand of the regular representation with multiplicity $n_{\rho}=\operatorname{dim} V$. Thus from the multiplicative property of Artin's L-functions and the above theorem it follows that

$$
\zeta_{F}(s)=\prod_{\rho} L(\rho, s)^{n_{\rho}}
$$

where the product is taken over all isomorphism classes of irreducible representations of G. We know that $\zeta_{F}(s)$ has a simple pole at $s=1$, and so does the Riemann zeta function which appears on the right, corresponding to the trivial representation. So it is conjectured that Artin L-functions for irreducible non-trivial ρ have analytic continuations to entire functions on \mathbb{C}. This is known for abelian G, by Tate's thesis, and for solvable G by Langlands. In general this conjecture is wide open.

Home-work problem. Let ℓ be a prime, and $\omega=e^{2 \pi i / \ell}$. Let $F=\mathbb{Q}(\omega)$. Let $E=F\left(2^{\frac{1}{\ell}}\right)$. In words, E is the splitting field of $x^{\ell}-2$. Let G be the Galois group of E. Show that

$$
G \cong\left\{\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)\right\}
$$

Hint: every $\sigma \in G$ is determined by its action on ω and $2^{\frac{1}{\ell}}$. Use this matrix representation of G to determine conjugacy classes in G. Prove the Čebotarev density theorem for G. Hint: first factor p in F, use the distribution statement for F and that the set of primes p that split completely in E has density $1 /|G|$.

