MATH 5210, LECTURE 7 - HILBERT SPACES APRIL 01

Let V be Euclidean space, that is, a vector space with a scalar product $(\cdot, \cdot): V \times V \rightarrow$ \mathbb{R}. Two vectors $x, y \in V$ are said to be orthogonal (perpendicular) if $(x, y)=0$.
Exercise. (Pythagora) If x and y are orthogonal, then

$$
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2} .
$$

Solution:
$\|x+y\|^{2}=(x+y, x+y)=(x, x)+(x, y)+(y, x)+(y, y)=(x, x)+(y, y)=\|x\|^{2}+\|y\|^{2}$.
Henceforth we assume that V is infinite dimensional and separable, i.e. it contains a dense countable set S. We order S in any way:

$$
s_{1}, s_{2}, \ldots
$$

We perform the following sieve process to S : Cross s_{n} if it is linear combination of $s_{1}, s_{2}, \ldots, s_{n-1}$. In other words, we cross out s_{1} if it is $0, s_{2}$ if it is a multiple of s_{1}, etc. We arrive to a linearly independent sub-sequence

$$
u_{1}, u_{2}, \ldots
$$

of S. Let $U \subset V$ be the linear span of u_{1}, u_{2}, \ldots This space contains S, hence it is dense in V. Thus U is a countably dimensional dense subspace of V. Conversely, if U is a dense, countably dimensional vector subspace of V with a basis u_{1}, u_{2}, \ldots then the set of linear combinations

$$
a_{1} u_{1}+a_{2} u_{1}+\ldots
$$

where $a_{1}, a_{2} \ldots \in \mathbb{Q}$ and almost all $a_{i}=0$, is a countable dense subset S of V. Thus for Euclidean spaces, and more generally normed spaces, a more convenient way to define separability is via a dense, countably dimensional subspace. For example, if $V=L^{2}([0,1])$ then the space of polynomial functions is a dense, countable dimensional subspace. We shall need the following lemma:

Lemma 0.1. Let V be a Euclidean space and U a dense countably dimensional subspace. Let $v \in V$ such that $(v, u)=0$ for all $u \in U$. Then $v=0$.

Proof. Since U is dense, there exists a convergent sequence $\left(v_{n}\right)$ in U such that $\lim _{n} v_{n}=$ v. By the Cauchy-Schwarz inequality,

$$
\left|\left(v-v_{n}, v\right)\right| \leq{ }_{1}\left\|v-v_{n}\right\| \cdot\|v\|
$$

Since $\left(v_{n}, v\right)=0$, as v_{n} are in U thus perpendicular to v, the left hand side is the constant $\|v\|^{2}$. Since $\lim _{n} v_{n}=v, \lim _{n}\left\|v_{n}-v\right\|=0$, and the right hand side goes to 0 . Hence $\|v\|=0$, so $v=0$.

Let U be a dense countably dimensional subspace of V, and u_{1}, u_{2}, \ldots a basis of U. We can perform the Gramm-Schmidt orthogonalization procedure to u_{1}, u_{2}, \ldots,

$$
\begin{aligned}
f_{1} & =u_{1} \\
f_{2} & =u_{2}-\frac{\left(u_{2}, f_{1}\right)}{\left(f_{1}, f_{1}\right)} f_{1} \\
f_{3} & =u_{3}-\frac{\left(u_{3}, f_{1}\right)}{\left(f_{1}, f_{1}\right)} f_{1}-\frac{\left(u_{3}, f_{2}\right)}{\left(f_{2}, f_{2}\right)} f_{2} \\
& \vdots
\end{aligned}
$$

followed by normalization

$$
e_{i}=\frac{f_{i}}{\left\|f_{i}\right\|}
$$

to get an ortho-normal basis e_{1}, e_{2}, \ldots of U, that its $\left(e_{i}, e_{j}\right)=0$ if $i \neq j$ and 1 if $i=j$.
Our main goal is to write any $v \in V$ as a series

$$
v=a_{1} e_{1}+a_{2} e_{2}+\ldots
$$

where the right hand side is defined as the limit of the sequence of partial sums. Working formally, and multiplying both sides by e_{i}, we get that $a_{i}=\left(v, e_{i}\right)$ for all i. In the next lecture we shall prove that the series

$$
\left(v, e_{1}\right) e_{1}+\left(v, e_{2}\right) e_{2}+\ldots
$$

is absolutely converging and, assuming that V is complete, the series converges to v. Complete, separable Euclidean spaces are called Hilbert spaces. A set e_{1}, e_{2}, \ldots of orthonormal vectors spanning a dense subset is called a basis of the Hilbert space.

An example of a Hilbert space is $L^{2}([a, b])$. Proof of completeness is similar to the one for $L^{1}([a, b])$, so we shall omit it. Furthermore, $L^{2}([a, b])$ is separable, since the subspace of polynomial functions is a dense countable dimensional subspace, just as it is in $L^{1}([a, b])$. In the special case $[a, b]=[-1,1]$ the orthogonalization process applied to the basis $1, x, x^{2}, \ldots$ gives (multiples) of Legendre polynomials $P_{n}(x)$. Legendre polynomials are normalized so that $P_{n}(1)=1$. Clearly $P_{1}(x)=1$ and $P_{2}(x)=x$.
Exercise. Compute the third Legendre polynomial $P_{3}(x)$.
Solution. $P_{3}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$.

