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Let V be Euclidean space, that is, a vector space with a scalar product (·, ·) : V ×V →
R. Two vectors x, y ∈ V are said to be orthogonal (perpendicular) if (x, y) = 0.

Exercise. (Pythagora) If x and y are orthogonal, then

||x + y||2 = ||x||2 + ||y||2.

Solution:

||x+y||2 = (x+y, x+y) = (x, x)+(x, y)+(y, x)+(y, y) = (x, x)+(y, y) = ||x||2+ ||y||2.

Henceforth we assume that V is infinite dimensional and separable, i.e. it contains
a dense countable set S. We order S in any way:

s1, s2, . . .

We perform the following sieve process to S: Cross sn if it is linear combination of
s1, s2, . . . , sn−1. In other words, we cross out s1 if it is 0, s2 if it is a multiple of s1, etc.
We arrive to a linearly independent sub-sequence

u1, u2, . . .

of S. Let U ⊂ V be the linear span of u1, u2, . . .. This space contains S, hence it is
dense in V . Thus U is a countably dimensional dense subspace of V . Conversely, if U
is a dense, countably dimensional vector subspace of V with a basis u1, u2, . . . then the
set of linear combinations

a1u1 + a2u1 + . . .

where a1, a2 . . . ∈ Q and almost all ai = 0, is a countable dense subset S of V . Thus
for Euclidean spaces, and more generally normed spaces, a more convenient way to
define separability is via a dense, countably dimensional subspace. For example, if
V = L2([0, 1]) then the space of polynomial functions is a dense, countable dimensional
subspace. We shall need the following lemma:

Lemma 0.1. Let V be a Euclidean space and U a dense countably dimensional sub-
space. Let v ∈ V such that (v, u) = 0 for all u ∈ U . Then v = 0.

Proof. Since U is dense, there exists a convergent sequence (vn) in U such that limn vn =
v. By the Cauchy-Schwarz inequality,

|(v − vn, v)| ≤ ||v − vn|| · ||v||.
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Since (vn, v) = 0, as vn are in U thus perpendicular to v, the left hand side is the
constant ||v||2. Since limn vn = v, limn ||vn − v|| = 0, and the right hand side goes to
0. Hence ||v|| = 0, so v = 0. �

Let U be a dense countably dimensional subspace of V , and u1, u2, . . . a basis of U .
We can perform the Gramm-Schmidt orthogonalization procedure to u1, u2, . . .,

f1 = u1

f2 = u2 − (u2,f1)
(f1,f1)

f1

f3 = u3 − (u3,f1)
(f1,f1)

f1 − (u3,f2)
(f2,f2)

f2
...

followed by normalization

ei =
fi
||fi||

to get an ortho-normal basis e1, e2, . . . of U , that its (ei, ej) = 0 if i 6= j and 1 if i = j.

Our main goal is to write any v ∈ V as a series

v = a1e1 + a2e2 + . . .

where the right hand side is defined as the limit of the sequence of partial sums.
Working formally, and multiplying both sides by ei, we get that ai = (v, ei) for all i.
In the next lecture we shall prove that the series

(v, e1)e1 + (v, e2)e2 + . . .

is absolutely converging and, assuming that V is complete, the series converges to v.
Complete, separable Euclidean spaces are called Hilbert spaces. A set e1, e2, . . . of
orthonormal vectors spanning a dense subset is called a basis of the Hilbert space.

An example of a Hilbert space is L2([a, b]). Proof of completeness is similar to the
one for L1([a, b]), so we shall omit it. Furthermore, L2([a, b]) is separable, since the
subspace of polynomial functions is a dense countable dimensional subspace, just as it
is in L1([a, b]). In the special case [a, b] = [−1, 1] the orthogonalization process applied
to the basis 1, x, x2, . . . gives (multiples) of Legendre polynomials Pn(x). Legendre
polynomials are normalized so that Pn(1) = 1. Clearly P1(x) = 1 and P2(x) = x.

Exercise. Compute the third Legendre polynomial P3(x).

Solution. P3(x) = 1
2
(3x2 − 1).


