MATH 5210, LECTURE 6 - EUCLIDEAN SPACES MARCH 30

Euclidean space is a vector space V over \mathbb{R} with a scalar product. Scalar product is a function $(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$ such that

- $(x, y)=(y, x)$
- $(\lambda x, y)=\lambda(x, y)=(x, \lambda y)$
- $(x, y+z)=(x, y)+(x, z)$.
- $(x, x) \geq 0$ and it is 0 if and only if $x=0$.
for all $x, y, z \in V$ and $\lambda \in \mathbb{R}$. The classical example is the dot product on $V=\mathbb{R}^{k}$, the space of all k-tuples of real numbers:

$$
(x, y)=\sum_{i=1}^{k} x_{i} y_{i}
$$

where $x=\left(x_{i}\right)$ and $y=\left(y_{i}\right)$ are two elements in V. Any Euclidean space is a normed space for the norm

$$
\|x\|=\sqrt{(x, x)}
$$

Of course, we need to verify that $\|x\|$ satisfies three norm axioms. The only nontrivial part is to check the triangle inequality. To that end we need the Cauchy-Schwarz inequality:

Lemma 0.1. For any $x, y \in V$,

$$
|(x, y)| \leq\|x\| \cdot\|y\|
$$

Proof. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(\lambda)=(x+\lambda y, x+\lambda y) \geq 0
$$

where ≥ 0 is a consequence of the fourth bullet. Using the first three bullets, we can rewrite

$$
f(\lambda)=(x, x)+2 \lambda(x, y)+\lambda^{2}(y, y)=c+b \lambda+a \lambda^{2} .
$$

Thus f is a quadratic polynomial whose graph is a parabola in the upper half plane since $f \geq 0$. In particular, f does not have two different real roots. This implies that the discriminant of the polynomial is not positive:

$$
b^{2}-4 a c=4(x, y)^{2}-4(x, x)(y, y) \leq 0
$$

Lemma follows after taking square roots.

Now it is easy to prove the triangle inequality:

$$
\|x+y\|^{2}=(x+y, x+y)=(x, x)+2(x, y)+(y, y) \leq(\|x\|+\|y\|)^{2}
$$

where we substituted $(x, x)=\|x\|^{2},(y, y)=\|y\|^{2}$ and used the Cauchy-Schwarz inequality for the last step.
Examples:

1) Let $\ell^{2}(\mathbb{N})$ be the set of infinite tuples $x=\left(x_{1}, x_{2}, \ldots\right)$ of real numbers such that

$$
\sum_{i=1}^{\infty} x_{i}^{2}<\infty
$$

If $x=\left(x_{1}, x_{2}, \ldots\right)$ is in $\ell^{2}(\mathbb{N})$, then $\lambda x=\left(\lambda x_{1}, \lambda x_{2}, \ldots\right)$ is also in $\ell^{2}(\mathbb{N})$.
Exercise. If $x=\left(x_{1}, x_{2}, \ldots\right)$ and $y=\left(y_{1}, y_{2}, \ldots\right)$ are in $\ell^{2}(\mathbb{N})$, show that $x+y=$ $\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots\right)$ is in $\ell^{2}(\mathbb{N})$.
Solution. We need to show that $\sum_{i=1}^{\infty}\left(x_{i}+y_{i}\right)^{2}$ is convergent. By the Cauchy-Schwarz inequality, $\left(x_{i}+y_{i}\right)^{2}=x_{i}^{2}+2 x_{i} y_{i}+y_{i}^{2} \leq 2\left(x_{i}^{2}+y_{i}^{2}\right)$ hence

$$
\sum_{i=1}^{\infty}\left(x_{i}+y_{i}\right)^{2} \leq 2 \sum_{i=1}^{\infty} x_{i}^{2}+2 \sum_{i=1}^{\infty} y_{i}^{2}<\infty
$$

It follows that $\ell^{2}(\mathbb{N})$ is a vector space. The scalar product is defined by

$$
(x, y)=\sum_{i=1}^{\infty} x_{i} y_{i}
$$

This series is absolutely convergent since, for every n,

$$
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq \sqrt{\sum_{i=1}^{n} x_{i}^{2}} \cdot \sqrt{\sum_{i=1}^{n} y_{i}^{2}}
$$

by the Cauchy-Schwarz inequality for \mathbb{R}^{n}.
2) $C([0,1])$, the space of continuous functions on $[0,1]$. The scalar product is

$$
(f, g)=\int_{0}^{1} f(t) g(t) d t
$$

2) $L^{2}([0,1])$, the space of equivalence classes of Lebesgue measurable functions f on $[0,1]$ such that f^{2} is integrable. Assume f and g are two such functions. Expanding $(f \pm g)^{2} \geq 0$ gives

$$
|f g| \leq \frac{f^{2}+g^{2}}{2}
$$

It follows that $f g$ is Lebesgue integrable, since it is measurable and bounded by an integrable function. Hence on $L^{2}([0,1])$ we have a well defined scalar product

$$
(f, g)=\int f g
$$

This space is isomorphic to the completion of example 2).

