MATH 5210, LECTURE 6 - EUCLIDEAN SPACES MARCH 30

Euclidean space is a vector space V over \mathbb{R} with a scalar product. Scalar product is a function $(\cdot, \cdot): V \times V \to \mathbb{R}$ such that

- (x, y) = (y, x)
- $(\lambda x, y) = \lambda(x, y) = (x, \lambda y)$
- (x, y + z) = (x, y) + (x, z).
- $(x,x) \ge 0$ and it is 0 if and only if x=0.

for all $x, y, z \in V$ and $\lambda \in \mathbb{R}$. The classical example is the dot product on $V = \mathbb{R}^k$, the space of all k-tuples of real numbers:

$$(x,y) = \sum_{i=1}^{k} x_i y_i$$

where $x = (x_i)$ and $y = (y_i)$ are two elements in V. Any Euclidean space is a normed space for the norm

$$||x|| = \sqrt{(x,x)}.$$

Of course, we need to verify that ||x|| satisfies three norm axioms. The only nontrivial part is to check the triangle inequality. To that end we need the Cauchy-Schwarz inequality:

Lemma 0.1. For any $x, y \in V$,

$$|(x,y)| \le ||x|| \cdot ||y||.$$

Proof. Consider the function $f: \mathbb{R} \to \mathbb{R}$

$$f(\lambda) = (x + \lambda y, x + \lambda y) \ge 0,$$

where ≥ 0 is a consequence of the fourth bullet. Using the first three bullets, we can rewrite

$$f(\lambda) = (x, x) + 2\lambda(x, y) + \lambda^{2}(y, y) = c + b\lambda + a\lambda^{2}.$$

Thus f is a quadratic polynomial whose graph is a parabola in the upper half plane since $f \geq 0$. In particular, f does not have two different real roots. This implies that the discriminant of the polynomial is not positive:

$$b^{2} - 4ac = 4(x, y)^{2} - 4(x, x)(y, y) \le 0.$$

Lemma follows after taking square roots.

Now it is easy to prove the triangle inequality:

$$||x+y||^2 = (x+y, x+y) = (x, x) + 2(x, y) + (y, y) \le (||x|| + ||y||)^2$$

where we substituted $(x,x)=||x||^2$, $(y,y)=||y||^2$ and used the Cauchy-Schwarz inequality for the last step.

Examples:

1) Let $\ell^2(\mathbb{N})$ be the set of infinite tuples $x = (x_1, x_2, \ldots)$ of real numbers such that

$$\sum_{i=1}^{\infty} x_i^2 < \infty.$$

If $x = (x_1, x_2, ...)$ is in $\ell^2(\mathbb{N})$, then $\lambda x = (\lambda x_1, \lambda x_2, ...)$ is also in $\ell^2(\mathbb{N})$.

Exercise. If $x = (x_1, x_2,...)$ and $y = (y_1, y_2,...)$ are in $\ell^2(\mathbb{N})$, show that $x + y = (x_1 + y_1, x_2 + y_2,...)$ is in $\ell^2(\mathbb{N})$.

Solution. We need to show that $\sum_{i=1}^{\infty} (x_i + y_i)^2$ is convergent. By the Cauchy-Schwarz inequality, $(x_i + y_i)^2 = x_i^2 + 2x_iy_i + y_i^2 \le 2(x_i^2 + y_i^2)$ hence

$$\sum_{i=1}^{\infty} (x_i + y_i)^2 \le 2 \sum_{i=1}^{\infty} x_i^2 + 2 \sum_{i=1}^{\infty} y_i^2 < \infty.$$

It follows that $\ell^2(\mathbb{N})$ is a vector space. The scalar product is defined by

$$(x,y) = \sum_{i=1}^{\infty} x_i y_i$$

This series is absolutely convergent since, for every n,

$$\sum_{i=1}^{n} |x_i y_i| \le \sqrt{\sum_{i=1}^{n} x_i^2} \cdot \sqrt{\sum_{i=1}^{n} y_i^2}$$

by the Cauchy-Schwarz inequality for \mathbb{R}^n .

2) C([0,1]), the space of continuous functions on [0,1]. The scalar product is

$$(f,g) = \int_0^1 f(t)g(t) dt.$$

2) $L^2([0,1])$, the space of equivalence classes of Lebesgue measurable functions f on [0,1] such that f^2 is integrable. Assume f and g are two such functions. Expanding $(f \pm g)^2 \ge 0$ gives

$$|fg| \le \frac{f^2 + g^2}{2}.$$

It follows that fg is Lebesgue integrable, since it is measurable and bounded by an integrable function. Hence on $L^2([0,1])$ we have a well defined scalar product

$$(f,g) = \int fg.$$

This space is isomorphic to the completion of example 2).