## MATH 5210, LECTURE 5 - HAHN-BANACH THEOREM MARCH 27

In this lecture we shall prove the following fundamental result (the Hahn-Banach Theorem) about normed spaces:

Theorem 0.1. Let $V_{0}$ be a subspace of a normed space $V$. Let $f_{0}: V_{0} \rightarrow \mathbb{R}$ be a bounded linear functional i.e. there exists $C \geq 0$ such that

$$
\left|f_{0}(x)\right| \leq C| | x \|
$$

for all $x \in V_{0}$. Then $f_{0}$ can be extended to a linear functional $f: V \rightarrow \mathbb{R}$ satisfying the same bound.

We shall prove this theorem assuming that $V$ is separable i.e. it contains a dense countable subset. This assumption lets us avoid use of Zorn's lemma. Most "naturally" occurring normed spaces are separable. For example, consider the space $C([0,1])$ of continuous functions on $[0,1]$ with the sup norm. By the theorem of Stone-Weierstrass, the space of polynomial functions is dense. Moreover:
Exercise. Let $p(x)=a_{n} x^{n}+\ldots+a_{0}$ be a polynomial. Show that, for every $\epsilon>0$, there exists a polynomial $q(x)=b_{n} x^{n}+\ldots+b_{0}$ with rational coefficients $b_{i}$ such that

$$
\sup _{x \in[0,1]}|p(x)-q(x)|<\epsilon
$$

Solution. Pick rational numbers such that $\left|a_{i}-b_{i}\right|<\epsilon /(n+1)$, for all $i=0, \ldots, n$. Then, for every $x \in[0,1]$ we have $|x|^{i} \leq 1$, for all $i$. Hence

$$
|p(x)-q(x)| \leq\left.\left|a_{n}=b_{n}\right| x\right|^{n}+\ldots+\left|a_{0}-b_{0}\right|<(n+1) \cdot \frac{\epsilon}{n+1}=\epsilon
$$

(This also implies that the supremum is less than $\epsilon$, why?).
Thus the set of polynomials with rational coefficients (a countable set) is dense in $C([0,1])$, hence $C([0,1])$ is separable. The space $L^{1}([0,1])$ is a also separable. Indeed, we have shown that $C([0,1])$ is dense in $L^{1}([0,1])$ and thus the set of polynomials with rational coefficients is dense in $L^{1}([0,1])$.

We go on to prove the theorem. Observe that it suffices to construct a functional $f$ such that $f(x) \leq C\|x\|$ for all $x \in V$. Indeed, the we also have $f(-x) \leq C\|-x\|$. But $f(-x)=-f(x)$, since $f$ is linear, and $\|-x\|=\|x\|$. Hence both

$$
f(x) \leq C\|x\| \text { and }-f(x) \leq C\|x\|
$$

hold, and this is equivalent to $|f(x)| \leq C| | x| |$. Let $z \in V$. We shall first extend $f_{0}$ to $V_{0}+\mathbb{R} z$. To that end, we need the following: For every $x, y \in V_{0}$, we have

$$
f_{0}(x)+f_{0}(y)=f_{0}(x+y) \leq C\|x+y\| \leq C\|x-z\|+C\|y+z\|,
$$

where the second is the triangular inequality. Rearranging, we get

$$
f_{0}(x)-C\|x-z\| \leq-f_{0}(y)+C\|y+z\|
$$

for all $x, y \in V_{0}$. It follows that the supremum, over all $x \in V_{0}$, of the numbers on the left side, is less than or equal to the infimum, over all $y \in V_{0}$, of the numbers on the right side. Hence there exists a real number $\gamma$ such that

$$
f_{0}(x)-C\|x-z\| \leq \gamma \leq-f_{0}(y)+C\|y+z\|
$$

for all $x, y \in V_{0}$.
Now we can extend $f$ to $V_{0}+\mathbb{R} z$. If $z \in V_{0}$, then there is nothing to prove. Otherwise any element in $V_{0}+\mathbb{R} z$ can be uniquely written as $v+t z$ for $v \in V_{0}$ and $t \in \mathbb{R}$. Let

$$
f(v+t z)=f_{0}(v)+t \gamma
$$

We need to check that

$$
f_{0}(v)+t \gamma \leq C\|v+t z\| .
$$

If $t=0$, this holds by the assumption on $f_{0}$. If $t>0$, we shall divide this inequality by $t$, if $t<0$ we shall divide by $u=-t$. If $t>0$ then

$$
f_{0}(v / t)+\gamma \leq C\|v / t+z\|
$$

or

$$
\gamma \leq-f_{0}(v / t)+C\|v / t+z\|
$$

If $t<0$, then

$$
f_{0}(v / u)-\gamma \leq C\|v / u-z\|
$$

or

$$
f_{0}(v / u)-C\|v / u-z\| \leq \gamma
$$

These inequalities hold by the choice of $\gamma$. Thus we have extended $f_{0}$ to $V_{0}+\mathbb{R} z$.
Since we assume that $V$ is separable, there exists a dense countable set $S=\left\{z_{1}, z_{2}, \ldots\right\}$ in $V$. We define a sequence of subspaces

$$
V_{1}=V_{0}+\mathbb{R} z_{1} \subseteq V_{2}=V_{1}+\mathbb{R} z_{2} \subseteq \ldots
$$

Following the above procedure, one step at a time, we can extend $f_{0}$ to the union $U=\cup_{n=1}^{\infty} V_{n}$ of these spaces. Let

$$
g: U \rightarrow \mathbb{R}
$$

denote this extension. By construction, we have $|g(x)| \leq C| | x| |$ for all $x \in U$. We also know that $U$ is dense in $V$. By HW 3 exercise 4), $g$ extends to a functional $f$ on $V$ satisfying the same bound.

An important consequence of the Hahn Banach Theorem is that continuous (i.e. bounded) functionals on a normed space $V$ separate points:

Corollary 0.2. Let $V$ be a normed vectors space and $x \neq y$ two elements in $V$. Then there exists a continuous functional $f$ on $V$ such that $f(x) \neq f(y)$.
Proof. Let $z=x-y$ and $V_{0}=\mathbb{R} z$. Let $f_{0}: V_{0} \rightarrow \mathbb{R}$ be the linear functional defined by $f_{0}(z)=1$. Then $f_{0}(x) \neq f_{0}(y)$ and $f$ extends to $V$.

