MATH 5210, LECTURE 3 - LEBESGUE IS COMPLETION OF RIEMANN MARCH 23

Let $[0,1] \subset \mathbb{R}$, and C([0,1]) the space of continuous functions on [0,1]. On this space we have a norm

$$||f|| = \int_0^1 |f(x)| \, dx$$

given by the Riemann integral. Since the Riemann and Lebesgue integrals of continuous functions on [0,1] coincide, the natural inclusion $C([0,1]) \subset L^1([0,1])$ is norm preserving. Hence C([0,1]) is a metric subspace of $L^1([0,1])$. In this lecture we shall prove that $L^1([0,1])$ is isomorphic to the completion of C([0,1]).

Let (X, d) be a metric space. Recall that the completion of X is the set X^* of equivalence classes of Cauchy sequences (x_n) in X. More precisely, given two Cauchy sequences (x_n) and (y_n) , the sequence of distances $d(x_n, y_n)$ is a Cauchy sequence of real numbers, hence it has a limit $\lim_n d(x_n, y_n)$. This limit is the (pseudo) distance between two Cauchy sequences. Two Cauchy sequences are equivalent if their distance is 0. Now assume that X is a subset of a complete metric space Y. Then any Cauchy sequence (x_n) in X has a limit $\lim_n x_n \in Y$. Observe that any two equivalence sequences have the same limit. Thus we have a natural map

$$i: X^* \to Y$$

that sends any Cauchy sequence in X to its limit. Moreover, if X is dense, then this map is an isomorphism of X^* and Y, see HW 3 exercise on my web page.

Examples: Let X = (0, 1], with metric given by the usual distance between real numbers. The space X is not complete, since $(x_n) = (\frac{1}{n})$ is a Cauchy sequence in X, without a limit. Let Y = [0, 1]. Then Y is compact and hence complete. Cleary X is a dense set in Y, therefore the completion of X is Y. The completion is a general abstract construction, however, sometimes it has a simple realization as in this example. A significantly more difficult example is $X = \mathbb{Q}$ and $Y = \mathbb{R}$. Hence \mathbb{R} is isomorphic to the completion of \mathbb{Q} . Of course, \mathbb{R} is sometimes defined as such, but there is another, wonderful, definition of \mathbb{R} by Dedekind cuts. In particular, the two definitions are equivalent.

Let's go back to $C([0,1]) \subset L^1([0,1])$. We know that $L^1([0,1])$ is complete, so it remains to show that C([0,1]) is dense in $L^1([0,1])$, that is, for every $f \in L^1([0,1])$ there exists $g \in C([0, 1])$ such that

$$||f-g|| = \int |f-g| < \epsilon.$$

The proof of that is a trivial series of reductions involving what we already know. From the definition of the Lebesgue integral, there exists a simple integrable function φ such that

$$||f - \varphi|| = \int |f - \varphi| < \epsilon.$$

Recall that $\varphi = \sum_{i=1}^{\infty} c_i \chi_{A_i}$ where $A_i \subset [a, b]$ are Lebesgue measurable sets, χ_{A_i} is the characteristic function of A_i , and $c_i \in \mathbb{R}$. Since φ is integrable, for every $\epsilon > 0$, there exists n such that

$$\sum_{i>n} |c_i| \mu(A_i) < \epsilon.$$

This implies that $||\varphi - \varphi_n|| < \epsilon$, where $\varphi_n = \sum_{i=1}^n c_i \chi_{A_i}$. Thus f can be approximated arbitrarily close by finite linear combinations of χ_A , for measurable sets A. But, given a measurable set A, for any $\epsilon > 0$ there exists an elementary set E such that $\mu(A\Delta E) < \epsilon$, hence

$$\int |\chi_E - \chi_A| = \mu(A\Delta E) < \epsilon$$

Thus, since any elementary set is a disjoint union of intervals, it follows that f can be approximated arbitrarily close by finite linear combinations of characteristic functions of intervals. Hence it remains to do the following exercise:

Exercise: Show that the characteristic function of an interval, say $[a, b] \subset [0, 1]$ can be approximated in $L^1([0, 1])$ by continuous functions.

Solution: For every natural number n, let f_n be a continuous piece-wise linear function such that f(x) = 0 on [0, a - 1/n], slope n on [a - 1/n, a], f(x) = 1 on [a, b], slope -non [b, b + 1/n] and f(x) = 0 on [b + 1/n, 1]. Then

$$||\chi_{[a,b]} - f_n|| = 1/n.$$

 $\mathbf{2}$