MATH 6370, LECTURE 2
 MARCH 20

GORDAN SAVIN

Let $X=\{2,3,5, \ldots\}$ denote the set of all prime numbers. Let $A \subset X$. Recall, from the last lecture, that A has polar density $\frac{m}{d}$ if $\zeta_{\mathbb{Q}, A}(s)^{d}$ has a pole of order m at $s=1$. More precisely, this means

$$
\lim _{s \rightarrow 1^{+}}(s-1)^{m} \zeta_{\mathbb{Q}, A}(s)^{d}=c \neq 0 .
$$

(Taking limit $s \rightarrow 1^{+}$keeps us in the half plane $\Re(s)>1$ where $\zeta_{\mathbb{Q}, S}(s)$ is absolutely convergent, so we don't have to worry about analytic continuation.) Since $\zeta_{\mathbb{Q}}(s)$ has a simple pole at $s=1$ with residue 1 , the above can be rewritten as

$$
\lim _{s \rightarrow 1^{+}} \zeta_{\mathbb{Q}}(s)^{-m} \zeta_{\mathbb{Q}, A}(s)^{d}=c \neq 0
$$

and this implies (check it) that

$$
\lim _{s \rightarrow 1^{+}} \frac{\log \zeta_{\mathbb{Q}, A}(s)}{\log \zeta_{\mathbb{Q}}(s)}=\frac{m}{d} .
$$

We shall relate polar density to more commonly used Dirichlet's density. The Dirichlet's density of A is the limit

$$
\delta(A):=\lim _{s \rightarrow 1^{+}} \frac{\sum_{p \in A} \frac{1}{p^{s}}}{\sum_{p \in X} \frac{1}{p^{s}}}
$$

if it exists. We need the following lemma:
Lemma 0.1. Recall that X is the set of all prime numbers. Then

$$
\lim _{s \rightarrow 1^{+}} \frac{\sum_{p \in X} \frac{1}{p^{s}}}{\log \zeta_{\mathbb{Q}}(s)}=1
$$

Proof. Using Euler factorization,

$$
\log \zeta_{\mathbb{Q}}(s)=\sum_{p \in X}-\log \left(1-\frac{1}{p^{s}}\right) .
$$

For $0<x<1$ we have

$$
-\log (1-x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}
$$

thus

$$
\log \zeta_{\mathbb{Q}}(s)=\sum_{p \in X} \frac{1}{p^{s}}+e(s)
$$

We now estimate the term $e(s)$ using

$$
\sum_{n=2}^{\infty} \frac{x^{n}}{n} \leq \frac{1}{2} \sum_{n=2}^{\infty} x^{n}=\frac{1}{2} x^{2} \frac{1}{1-x}
$$

Furthermore, since

$$
\frac{1}{1-\frac{1}{p^{s}}} \leq 2
$$

for $s>1$ it follows that

$$
e(s) \leq \sum_{p \in X} \frac{1}{p^{2 s}} \leq \zeta_{\mathbb{Q}}(2 s) .
$$

Thus $\lim _{s \rightarrow 1^{+}}\left(e(s) / \log \zeta_{\mathbb{Q}}(s)\right)=0$.

Exercise: If $\log \zeta_{\mathbb{Q}, A}(s) \rightarrow+\infty$ as $s \rightarrow 1^{+}$then

$$
\lim _{s \rightarrow 1^{+}} \frac{\sum_{p \in A} \frac{1}{p^{s}}}{\log \zeta_{\mathbb{Q}, A}(s)}=1
$$

Thus, if a set A has a positive polar density, then $\log \zeta_{\mathbb{Q}, A}(s) \rightarrow+\infty$ as $s \rightarrow 1^{+}$, it follows at once from the lemma and the exercise that A has Dirichlet's density equal to the polar density. In particular, from the previous lecture:
Corollary 0.2. The set of primes that split completely in a Galois extension of degree n has Dirichlet density $1 / n$.

This is a great result, and a special case of the Čebotarev density theorem, that we shall discuss later.
Exercise: If A and B are two disjoint sets with Dirichlet measures prove that

$$
\delta(A \cup B)=\delta(A)+\delta(B)
$$

In words, Dirichlet measure is a finitely additive measure on X. Is it countably additive?
Exercise: Assume F is a quadratic field, and B the set of primes that are inert (stay prime) in F. Prove that $\delta(B)=1 / 2$. As a consequence, the set of primes $p \equiv 1(\bmod 4)$ and the set of primes $p \equiv 3(\bmod 4)$ both have Dirichlet's density $1 / 2$, why?

