MATH 6370, LECTURE 1 MARCH 18

GORDAN SAVIN

Let $[F: \mathbb{Q}]=n$ be a number field, and let A be the ring of all algebraic integers in F. Let Δ be the discriminant of A. The Dedekind zeta function attached to F is

$$
\zeta_{F}(s)=\sum_{I \subseteq A} \frac{1}{N(I)^{s}}
$$

where the sum is taken over all non-zero ideals in A. Observe that $\zeta_{\mathbb{Q}}(s)$ is the Riemann zeta function. The series $\zeta_{F}(s)$ converges absolutely on the half plane $\Re(s)>1$ and has a factorization

$$
\zeta_{F}(s)=\prod_{P \subset A} \frac{1}{1-\frac{1}{N(P)^{s}}}
$$

where the product is over maximal (non-zero prime) ideals in A. If $S \subset \mathbb{N}$ is a set of primes, consider the partial product

$$
\zeta_{F, S}(s)=\prod_{P \mid p \in S} \frac{1}{1-\frac{1}{N(P)^{s}}}
$$

In words, this is a product over P appearing in factorizations of $p \in S$. The Dedekind zeta function has a meromorphic continuation on the half-plane $\Re(s)>1-1 / n$, with a simple pole at $s=1$. We shall use this fact to prove a number of results on distribution of primes. If $f(s)$ and $g(s)$ are two meromorphic functions, we shall write $f(s) \approx g(s)$ if $f(s) / g(s)$ is holomorphic and non-zero at $s=1$. In particular, since the factors $1 /\left(1-\frac{1}{N(P)^{s}}\right)$ are holomorphic and non-zero at $s=1$, for any S containing almost all primes we have

$$
\zeta_{F}(s) \approx \zeta_{F, S}(s)
$$

As a warm-up, in order to illustrate main ideas, let's prove the following case of primes in progression result.

Proposition 0.1. There are infinitely many primes $p \equiv 1(\bmod 4)$ and infinitely many primes $p \equiv 3(\bmod 4)$.

Proof.
Let $F=\mathbb{Q}(\sqrt{-1})$. The proof is based on the fact that an odd prime p splits in this quadratic extension if $p \equiv 1(\bmod 4)$ and is inert (stays prime) if $p \equiv 3(\bmod 4)$. Let S be the set of primes $p \equiv 1(\bmod 4)$ and let T be the set of primes $p \equiv 3(\bmod 4)$. We have

$$
\zeta_{F}(s) \approx \zeta_{F, S}(s) \zeta_{F, T}(s)
$$

If $p \in S$, then $(p)=P \bar{P}$ where $P \neq \bar{P}$ are two prime ideals such that $N(P)=N(\bar{P})=p$. Hence

$$
\zeta_{F, S}(s)=\prod_{p \in S} \frac{1}{\left(1-\frac{1}{p^{s}}\right)^{2}}
$$

If $p \in T$, then (p) is prime and $N((p))=p^{2}$. Hence

$$
\zeta_{F, T}(s)=\prod_{p \in T} \frac{1}{\left(1-\frac{1}{p^{2 s}}\right)}
$$

Notice that these are the factors of the Riemann zeta function at s (squared) and at $2 s$, respectively.

Now we can prove that S and T are both infinite. If S is finite, then T contain almost all primes, hence $\zeta_{F, T}(s) \approx \zeta_{\mathbb{Q}}(2 s)$, and

$$
\zeta_{F}(s) \approx \zeta_{\mathbb{Q}}(2 s)
$$

The left hand side has a pole at $s=1$, while the right hand side is holomorphic, a contradiction. On the other hand, if T is finite, then S contain almost all primes, hence $\zeta_{F, S}(s) \approx \zeta_{\mathbb{Q}}(s)^{2}$ and

$$
\zeta_{F}(s) \approx \zeta_{\mathbb{Q}}(s)^{2}
$$

The left hand side has a pole at $s=1$, while the right hand side has a double pole, a contradiction.

Let's do this more conceptually. We say that a set $S \subset \mathbb{N}$ of primes has polar density $\frac{m}{d}$ if $\zeta_{\mathbb{Q}, S}(s)^{d}$ has a pole of order m at $s=1$. For example, if S is a set of almost all primes p, then its polar density is 1 . On the other hand, if S is finite, then its polar density is 0 . Let F be a quadratic extension of \mathbb{Q}, and let S be the set of all primes p that split completely, i.e. $(p)=P_{1} P_{2}$ where P_{1} and P_{2} are two prime ideals with norm p. Then

$$
\zeta_{F, S}(s)=\prod_{p \in S} \frac{1}{\left(1-\frac{1}{p^{s}}\right)^{2}}=\zeta_{\mathbb{Q}, S}(s)^{2}
$$

Let T be the set of all primes p that stay inert, i.e. (p) is a prime ideal in A with norm p^{2}. Then

$$
\zeta_{F, T}(s)=\prod_{p \in T} \frac{1}{\left(1-\frac{1}{p^{2 s}}\right)}=\zeta_{\mathbb{Q}, T}(2 s) .
$$

For $s>1$, real, we have the following obvious inequalities:

$$
1<\zeta_{\mathbb{Q}, T}(2 s)<\zeta_{\mathbb{Q}}(2 s) .
$$

Thus $\zeta_{F, T}(s)$ has neither zero nor a pole at $s=1$. Hence

$$
\zeta_{F}(s) \approx \zeta_{F, S}(s) \zeta_{F, T}(s) \approx \zeta_{\mathbb{Q}, S}(s)^{2}
$$

It follows that the polar density of the set of primes that split in a quadratic extension is $1 / 2$.

We now push this idea a step further. Assume that $[F: \mathbb{Q}]=n$ is Galois. Let p be an unramified prime, so we have a factorization $(p)=P_{1} \cdots P_{g}$ in A where P_{1}, \ldots, P_{g} are
prime ideals such that $A / P_{1} \cong \ldots \cong A / P_{g} \cong \mathbb{F}_{p^{f}}$, and $n=f g$. The prime p is said to split completely if $f=1$ and $g=n$.
Exercise: Prove that the polar density of the set of primes that split completely in F is $1 / n$.

